Introduction and Objective

- After a myocardial infarction, or heart attack, the formation of scar tissue disrupts tissue alignment and increases extracellular matrix (ECM) stiffness.
- Effects of matrix stiffness and alignment on performance of cardiac tissue, especially energy metabolism, aren’t well understood.
- Our objective is to miniaturize constructs used for “Heart-on-a-Chip” to be compatible with a Seahorse Extracellular Flux Analyzer.
- We use PDMS (polydimethylsiloxane) to mimic the stiffness of cardiac ECM.
- PDMS 184 is stiffer, not gel-like.
- PDMS 1:20 is softer, stickier, more gel-like.

Methods and Skills Learned

Development of Micro-Thin Discs (MTD’s) for Tissue Alignment

- We use PDMS (polydimethylsiloxane) to mimic the stiffness of cardiac ECM.
- PDMS 184 is stiffer, not gel-like.
- PDMS 1:20 is softer, stickier, more gel-like.

PDMS MTD Fabrication

- 22x22mm glass coverslips with nine 6.5 mm circles etched by Epilog laser engraver. Source: Jezell Lee.

Micro-contact Printing

- Patterning: micropattern MTD’s with fibronectin to induce tissue alignment.
- Attachment: plasma treat the XF24 cell culture plate; peel MTD off coverslips; press down with tweezers.
- Cell culture: Seed plate with neonatal rat ventricular myocytes and perform Seahorse metabolic measurements after 4-5 days. Source: Megan L. McCain.

Results

Successful Implementation of MTD’s

- (left) Seahorse XF24 plate with MTD’s and cell media. Source: Jezell Lee.
- (below) well schematic and four photographs. Source: Davi Lyra-Leite.

Schematic of Seahorse Cell Culture Plate

- PDMS MTD
- Cells
- Media
- Drug Injectors
- OCR Sensor

Mitochondrial Respirometry

- Visited a lab at Cedars-Sinai to measure Oxygen Consumption Rate (OCR) using a Seahorse Extracellular Flux Analyzer.
- Visiting with PDMS 184 stamps made using a medium petri dish and wafer. Source: Jezell Lee.

Acknowledgements

I would like to thank my professor Dr. Megan McCain, my wonderful PhD mentor Davi Lyra-Leite, and everyone part of Laboratory for Living Systems Engineering for providing me with interesting challenges and conversations this summer! Special thanks to Dr. Katie Mills and Ian Andrade for always checking up on me and feeding me every Friday. Jasmine Shu, thank you for being my SURE mentor. Last, but not least in my heart, thank you Mom and Dad for supporting and encouraging my ongoing quest for knowledge all the way!

Relationship With STEM Coursework

- Biomedical Engineering: Biology, chemistry, physics.
- Prior knowledge of heart anatomy and basic mitochondrial function from my Advanced Placement biology class improved communication with my mentor and the rest of the interdisciplinary research team.
- Placement biology class improved communication with my mentor and the rest of the interdisciplinary research team.
- The placement biology class improved communication with my mentor and the rest of the interdisciplinary research team.

Future Steps

- My research has convinced me to study biomedical engineering instead of cell biology in college.
- I would love to conduct research as an undergraduate student.
- As a girl with a family history of hypertension and heart-related problems, I hope to combat this pattern by:
 - chasing knowledge
 - reproducing living tissues in vitro to replace scarred tissues
 - ultimately making a profound impact on the field of science and greatly enhancing the daily lives of those affected by said diseases.