Logo: University of Southern California

Events Calendar



Select a calendar:



Filter April Events by Event Type:


SUNMONTUEWEDTHUFRISAT
26
28
29
30
1

2
3
4
5
6
8

9
10
11
12
13
15

16
17
18
19
20
22

23
24
25
26
27
29

30
1
2
3
6


Events for April 28, 2017

  • AI Seminar

    Fri, Apr 28, 2017 @ 11:00 AM - 12:00 PM

    Information Sciences Institute

    Conferences, Lectures, & Seminars


    Speaker: Avi Pfeffer, Charles River Analytics

    Talk Title: PROGRAMMING: PAST, PRESENT, AND FUTURE

    Abstract: Probabilistic reasoning lets you predict the future, infer past causes of current observations, and learn from experience. It can be hard to implement a probabilistic application because you have to implement the representation, inference, and learning algorithms. Probabilistic programming makes this much easier by providing an expressive language to represent models as well as inference and learning algorithms that automatically apply to models written in the language. In this talk, I will present the past, present, and future of probabilistic programming and our Figaro probabilistic programming system. I will start with the motivation for probabilistic programming and Figaro. After presenting some basic Figaro concepts, I will introduce several applications we have been developing at Charles River Analytics using Figaro. Finally, I will describe our future vision of providing a probabilistic programming tool that domain experts with no machine learning knowledge can use. In particular, I will present a new inference method that is designed to work well on a wide variety of problems with no user configuration. Prior knowledge of machine learning is not required to follow the talk.

    Biography: Dr. Avi Pfeffer is Chief Scientist at Charles River Analytics. Dr. Pfeffer is a leading researcher on a variety of computational intelligence techniques including probabilistic reasoning, machine learning, and computational game theory. Dr. Pfeffer has developed numerous innovative probabilistic representation and reasoning frameworks, such as probabilistic programming, which enables the development of probabilistic models using the full power of programming languages, and statistical relational learning, which provides the ability to combine probabilistic and relational reasoning. He is the lead developer of Charles River Analytics Figaro probabilistic programming language. As an Associate Professor at Harvard, he developed IBAL, the first general-purpose probabilistic programming language. While at Harvard, he also produced systems for representing, reasoning about, and learning the beliefs, preferences, and decision making strategies of people in strategic situations. Prior to joining Harvard, he invented object-oriented Bayesian networks and probabilistic relational models, which form the foundation of the field of statistical relational learning. Dr. Pfeffer serves as Action Editor of the Journal of Machine Learning Research and served as Associate Editor of Artificial Intelligence Journal and as Program Chair of the Conference on Uncertainty in Artificial Intelligence. He has published many journals and conference articles and is the author of a text on probabilistic programming. Dr. Pfeffer received his Ph.D. in computer science from Stanford University and his B.A. in computer science from the University of California, Berkeley.



    Host: Craig Knoblock

    More Info: http://webcastermshd.isi.edu/Mediasite/Play/9b1644b4150f48cabdccf208f55773a51d

    Location: 11th floor large conference room

    Audiences: Everyone Is Invited

    Contact: Kary LAU

    Event Link: http://webcastermshd.isi.edu/Mediasite/Play/9b1644b4150f48cabdccf208f55773a51d


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • NL Seminar-Modeling Dialog using Probabilistic Programs

    Fri, Apr 28, 2017 @ 03:00 PM - 04:00 PM

    Information Sciences Institute

    Conferences, Lectures, & Seminars


    Speaker: Andreas Stuhlmuller , Stanford Univ.

    Talk Title: Modeling Dialog Using Probabilistic Programs

    Series: Natural Language Seminar

    Abstract: How can we effectively explore the space of automated dialog systems? In this talk, I introduce WebPPL, a probabilistic programming language that provides a wide range of inference and optimization algorithms out of the box. This language makes it easy to express and combine probabilistic models, including regression and categorization models, highly structured cognitive models, models of agents that make sequential plans, and deep neural nets. I show that this also includes recent sequence to sequence architectures for dialog. I then use this framework to implement *dialog automation using workspaces, a variation on these architectures that is aimed at dialogs that require sufficiently deep reasoning between utterances that it is difficult to learn how to automate them from transcripts alone.



    Biography: Andreas Stuhlmüller is a post-doctoral researcher at Stanford, working in Prof. Noah Goodman's Computation & Cognition lab, and founder of Ought Inc. Previously, he received his Ph.D. in Brain and Cognitive Sciences from MIT, where he was part of Prof. Josh Tenenbaum's Computational Cognitive Science group. He has worked on the design and implementation of probabilistic programming languages, on their application to cognitive modeling, and recently on dialog systems. He is broadly interested in leveraging machine learning to help people think.

    Host: Marjan Ghazvininejad and Kevin Knight

    More Info: http://nlg.isi.edu/nl-seminar/

    Location: Information Science Institute (ISI) - 11th Flr Conf Rm # 1135, Marina Del Rey

    Audiences: Everyone Is Invited

    Contact: Peter Zamar

    Event Link: http://nlg.isi.edu/nl-seminar/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.