Conferences, Lectures, & Seminars
Events for February
-
Online Dynamic Robust PCA
Mon, Feb 01, 2016 @ 10:00 AM - 11:00 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Namrata Vaswani, Electrical and Computer Engineering, Iowa State University
Talk Title: Online Dynamic Robust PCA
Abstract: We introduce a novel and provably correct solution approach, called ReProCS, to the online dynamic robust principal components' analysis (PCA) problem. Robust PCA (RPCA) can be understood as a problem of separating a low-rank matrix of the true data, L, and a sparse matrix of outliers, S, from their sum, Y = L + S. Application domains include computer vision and data analytics, among others. For example, the problem of separating sparse foregrounds (e.g., moving objects) from slowly changing backgrounds in video sequences can be posed as an instance of RPCA. This is a key first step in simplifying many computer vision tasks, e.g., video surveillance, low-bandwidth mobile video chats and video conferencing, low-light imaging ("seeing moving objects in the dark") and video denoising. RPCA solutions are also very useful in solving product recommender systems' design problems, such as the Netflix problem, when the user data may contain outliers (e.g., due to lazy or malicious users). While there has been a large amount of recent work on provably correct batch RPCA solutions, the online and dynamic RPCA problem is largely open. Online dynamic RPCA is the problem of solving RPCA on-the-fly, with the extra assumptions that the initial subspace is accurately known and that the subspace from which the true data is generated is either fixed or changes slowly over time. For most of the applications discussed above, an online solution is clearly preferable and it can be argued that these extra assumptions hold. We demonstrate the power of our proposed ReProCS based online dynamic RPCA solution for many of the above applications. Moreover, under mild assumptions, we show that, with high probability, ReProCS recovers the support of the outliers exactly at all times; the subspace in which the true data lies is tracked accurately; and the error in the estimates of both is small at all times.
Host: Professor Mahdi Soltanolkotabi
Location: 248
Audiences: Everyone Is Invited
Contact: Talyia Veal
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Communications, Networks & Systems (CommNetS) Seminar
Mon, Feb 01, 2016 @ 11:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Achilleas Anastasopoulos, Univ. of Michigan, Ann Arbor
Talk Title: A systematic process for evaluating structured equilibria in dynamic games with asymmetric information
Series: CommNetS
Abstract: We consider problems involving multiple agents making decisions dynamically in the presence of asymmetric information.
When agents have a common objective (dynamic decentralized teams) recent results have established a systematic framework for obtaining the optimal decision strategy that is akin to the well-known backward induction in partially observed Markov decision processes (POMDPs).
However, when agents are strategic (dynamic games with asymmetric information) there is no known systematic process for evaluating the appropriate equilibria in a sufficiently general setting. The well-known backward induction process for finding sub-game perfect equilibria is useless in these problems and we are stuck with an indecomposable fixed-point equation in the space of strategies and beliefs.
In this talk we will discuss a class of perfect Bayesian equilibria (PBE) that are the counterparts of Markov perfect equilibria (MPE) for asymmetric information games. The corresponding "state" is a belief based on the common information among agents.
We will then propose a two-step backward-forward inductive algorithm to find these structured PBE. The backward inductive part of this algorithm defines an equilibrium generating function. Each period in the backward induction involves solving a "small" fixed point equation. Using this generating function, equilibrium strategies and beliefs are defined through a forward recursion.
Biography: Achilleas Anastasopoulos received the Diploma in EE from the National Technical University of Athens, Greece in 1993, and the M.S. and Ph.D. degrees in EE from the University of Southern California in 1994 and 1999, respectively. He is currently an Associate Professor of EECS at the University of Michigan, Ann Arbor. His research interests lie in 1) the general area of communication and information theory, with emphasis in channel coding and multi-user channels; 2) control theory with emphasis in decentralized stochastic control and its connections to communications and information-theoretic problems; 3) analysis of dynamic games and mechanism design for resource allocation in networked systems.
Host: Dr. Ashutosh Nayyar
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
How Do Large Networks of Neurons Make Decisions?
Tue, Feb 02, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Bijan Pesaran, New York University
Talk Title: How Do Large Networks of Neurons Make Decisions?
Abstract: Abstract: Selecting and planning actions recruits neurons across many areas of the brain but how ensembles of neurons work together to make decisions is unknown. Temporally-coherentneural activity may provide a mechanism by which neurons coordinate their activity in order to make decisions. If so, neurons that are part of coherent ensembles may predict movement choices before other ensembles of neurons. We have been studying activity within the posterior parietal cortex while monkeys make choices about where to look and reach, by decoding the activity to predict the choices. We find that ensembles of neurons that display coherent patterns of spiking activity extending across the parietal cortex, ''dual coherent'' ensembles, predict movement choices substantially earlier than other neuronal ensembles. We propose that dual-coherent spike timing reflects interactions between groups of neurons that play an important role in how we make decisions. I will discuss this result in the context of models of larger scale brain circuits that make decisions. I will finish by presenting our latest efforts to develop new technologies and perform brain-scale investigations of the primate brain.
Biography: Bijan Pesaran is Associate Professor of Neural Science at the Center for Neural Science at New York University. He is also member of NYUs Center for Neuroeconomics. Pesaran is an expert in neuronal dynamics and decision making and has pioneered the study of spike-field coherence in the non-human primate brain. His lab has developed large-scale neurophysiological circuit mapping capabilities to understand how behavior emerges from neuronal activity across interacting brain circuits. He has developed transformative multimodal technology to simultaneously record from single neurons, local potentials and micro-ECoG signals across the cortical layers directly below ECoG recording sites.
Host: Maryam Shanechi
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Gloria Halfacre
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
An Information Theoretic Perspective of Cloud Radio Access Networks
Fri, Feb 05, 2016 @ 01:00 PM - 02:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Shlomo Shamai, Technion Israel Institute of Technology
Talk Title: An Information Theoretic Perspective of Cloud Radio Access Networks
Abstract: On Cloud Radio Access Networks: Information Theoretic Considerations Cloud radio access networks (C-RANs) emerge as appealing architectures for next-generation wireless/cellular systems whereby the processing/decoding is migrated from the local base-stations/radio units (RU) to a control/central units (CU) in the "cloud". This is facilitated by fronthaul links connecting the RUs to the managing CUs. We focus on oblivious processing at the RU, and hence the fronthaul links carry digital information about the baseband signals, in the uplink from the RUs to the CU and vice versa in the downlink. The high data rate service demands in C-RANs, imply that even with fast (optical) fronthauls, let alone for heterogeneous fronhauls, efficient compression of the basedand signals is essential. In this talk we focus on advanced robust signal processing solutions, emerging by network information theoretic concept and review also the basic approaches to this cloud network. Multi-hop fronthaul topologies are also discussed. Analysis and numerical results illustrate the considerable performance gains to be expected for different cellular models. Some interesting theoretical directions conclude the presentation.
Joint work with S.-H. Park (Chonbuk National University), O. Simeone (NJIT), and O. Sahin (InterDigital)
Biography: Shlomo Shamai (Shitz) received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from the Technion---Israel Institute of Technology, in 1975, 1981 and 1986 respectively.
During 1975-1985 he was with the Communications Research Labs, in the capacity of a Senior Research Engineer. Since 1986 he is with the Department of Electrical Engineering, Technion---Israel Institute of Technology, where he is now a Technion Distinguished Professor, and holds the William Fondiller Chair of Telecommunications. His research interests encompasses a wide spectrum of topics in information theory and statistical communications.
Dr. Shamai (Shitz) is an IEEE Fellow, a member of the Israeli Academy of Sciences and Humanities and a foreign member of the US National Academy of Engineering. He is the recipient of the 2011 Claude E. Shannon Award and the 2014 Rothschild Prize in Mathematics/Computer Sciences and Engineering.
He has been awarded the 1999 van der Pol Gold Medal of the Union Radio Scientifique Internationale (URSI), and is a co-recipient of the 2000 IEEE Donald G. Fink Prize Paper Award, the 2003, and the 2004 joint IT/COM societies paper award, the 2007 IEEE Information Theory Society Paper Award, the 2009 and 2015 European Commission FP7, Network of Excellence in Wireless COMmunications (NEWCOM++, NEWCOM#) Best Paper Awards, the 2010 Thomson Reuters Award for International Excellence in Scientific Research, the 2014 EURASIP Best Paper Award (for the EURASIP Journal on Wireless Communications and Networking), and the 2015 IEEE Communications Society Best Tutorial Paper Award. He is also the recipient of 1985 Alon Grant for distinguished young scientists and the 2000 Technion Henry Taub Prize for Excellence in Research. He has served as Associate Editor for the Shannon Theory of the IEEE Transactions on Information Theory, and has also served twice on the Board of Governors of the Information Theory Society. He has served on the Executive Editorial Board of the IEEE Transactions on Information Theory
Host: Guiseppe Caire, caire@usc.edu
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 539
Audiences: Everyone Is Invited
Contact: Gerrielyn Ramos
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
EE-EP Faculty Candidate - Owen Miller, Friday, February 5th at 2:00pm in EEB 132
Fri, Feb 05, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Owen Miller, Massachusetts Institute of Technology
Talk Title: Design at the Nanoscale: Reaching the Limits of Wave-Matter Interactions
Abstract: Nanoscale devices are emerging for an increasing variety of technological applications. Photonics will play a critical role, and within three areas - photovoltaics, nanoparticle scattering, and radiative heat transfer - I will show how large-scale computational optimization and rigorous analytical frameworks enable rapid search through large design spaces, and spur discovery of fundamental limits to interactions between light and matter.
In photovoltaics, the famous ray-optical 4n^2 limit to absorption enhancement has for decades served as a critical design goal, and it motivated the use of quasi-random textures in commercial solar cells. I will show that at subwavelength scales, non-intuitive, computationally designed textures outperform random ones, and can closely approach the 4n^2 limit. Pivoting to metallic structures, where there has not been an analogous "4n^2" limit, I will show how energy-conservation principles lead to fundamental limits to the optical response of metals, answering a long-standing question about the tradeoff between resonant enhancement and material loss. The limits were stimulated by a computational discovery in nanoparticle optimization, where I will present theoretical designs and experimental measurements (by a collaborator) approaching the upper bounds of absorption and scattering. The energy-conservation principles can be extended to the emerging field of radiative heat transfer, where they generalize the ray-optical concept of a "blackbody" to the nanoscale.
Biography: Dr. Owen Miller is a postdoctoral research associate in MIT Applied Math, working with Steven Johnson. He received his PhD in 2012 from UC Berkeley, where he was advised by Eli Yablonovitch and selected as an NSF Graduate Fellow. He received bachelor's degrees in EE and physics from the Univ. of Virginia in 2007. His research interests center around leveraging large-scale computational optimization and theoretical analysis for nanoscale devices, especially for emerging energy applications.
Host: EE-EP
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
EE-EP Seminar - Peng Zhang, Monday, February 8th at 2:00pm in EEB 132
Mon, Feb 08, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Peng Zhang, University of Michigan
Talk Title: Ultrafast and Nanoscale Interfacial Charge Transport and It's Interaction with Electomagnetic Waves
Abstract: Interfacial charge and energy transport is of fundamental importance to nanoscience and devices. It is critical to the development of quantum plasmonic junctions, ultrafast photoelectron sources, and compact electromagnetic radiation sources (millimeter wave to THz to x-ray), which have applications in imaging, communication, energy, and security. The rapid development in nanotechnology and ultrafast laser optics has opened up great opportunities to control interfacial transport at ultrashort spatiotemporal scales and offers unprecedented scientific advances. However, the understanding of the underlying physics is limited and scaling laws are largely unexplored.
In this talk, I will present recent advances on the modeling of electron transport at contact interfaces and ultrafast electron emission from metal surfaces. Scaling laws for electrical contact resistance between dissimilar materials are constructed for a large range of material properties and geometrical aspect ratios. Spreading resistance and current crowding effects are quantified from the exact solutions constructed. Validated against numerical codes, they are recently applied to electrically pumped nanolasers. A general theory is developed for the quantum tunneling current in a nanoscale metal-insulator-metal junction, covering the direct tunneling, field emission, and space-charge-limited regimes. I will also show our recent theory for laser-induced electron emission, by solving the time-dependent Schrödinger equation exactly, for arbitrary combination of dc bias and laser intensity. Other modeling efforts on geometric diodes, electromagnetic power absorption, and THz Smith-Purcell radiation will be highlighted. Future research prospects on these topics will be discussed.
Biography: Peng Zhang is an Assistant Research Scientist in the Department of Nuclear Engineering and Radiological Sciences at the University of Michigan (UM) at Ann Arbor, where he received his Ph.D. degree in 2012. He was a recipient of the UM Richard and Eleanor Towner Prize for Outstanding Ph.D. Research, the UM Rackham Presidential Fellowship Award, and the IEEE Nuclear and Plasma Sciences Graduate Scholarship Award. He has authored journal publications on electrical contacts, classical, ballistic, and quantum diodes, electron emission, electromagnetic heating phenomenology on rough surfaces, surface flashover and discharge, high power microwave sources, pulsed power systems, z-pinches, quantum electrodynamic laser-plasma interaction, and Smith-Purcell radiation. His current research interests mainly focus on theoretical and computational nanoscience and devices, including quantum plasmonic junctions, ultrafast photoemission, and novel compact electromagnetic radiation sources.
Host: EE-EP
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Communications, Networks & Systems (CommNetS) Seminar
Wed, Feb 10, 2016 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Reinhard Heckel, UC Berkeley
Talk Title: Super-resolution radar
Series: CommNetS
Abstract: In this talk, we study the identification of a time-varying linear system whose response is a weighted superposition of time and frequency shifted versions of the input signal. This problem arises in a multitude of applications such as wireless communications and radar imaging. Due to practical constraints, the input signal has finite bandwidth B, and the received signal is observed over a finite time interval of length T only. This gives rise to a time and frequency resolution of 1/B and 1/T. We show that this resolution limit can be overcome, i.e., we can recover the exact (continuous) time-frequency shifts and the corresponding attenuation factors, by solving a convex optimization problem. This result holds provided that the distance between the time-frequency shifts is at least 2.37/B and 2.37/T, in time and frequency. Furthermore, this result allows the total number of time-frequency shifts to be linear (up to a log-factor) in BT, the dimensionality of the response of the system. More generally, we show that we can estimate the time-frequency components of a signal that is S-sparse in the continuous dictionary of time-frequency shifts of a random (window) function, from a number of measurements, that is linear (up to a log-factor) in S. We also discuss extensions of this theory to the localization of targets in MIMO radar.
Biography: Reinhard Heckel is a Postdoctoral researcher in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. Before that, he spent a year in the Cognitive Computing & Computational Sciences Department at IBM Research, Zurich. He completed his Ph.D. in August 2014 at ETH Zurich, Department of Information Technology and Electrical Engineering, advised by Helmut Bölcskei. In Fall 2013, he was a visiting Ph.D. student in the Statistics Department of Stanford University. Reinhard Heckel is interested in various topics in machine learning, mathematical signal processing, sparse signal recovery, and computational biology.
Host: Mahdi Soltanolkotabi
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Communications, Networks & Systems (CommNetS) Seminar
Thu, Feb 11, 2016 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Michael Friedlander, UC Davis
Talk Title: Level-set methods for convex optimization
Series: CommNetS
Abstract: Convex optimization problems in a variety of applications have favorable objectives but complicating constraints, and first-order methods are not immediately applicable. We propose an approach that exchanges the roles of the objective and constraint functions, and instead approximately solves a sequence of parametric problems. We describe the theoretical and practical properties of this approach for a broad range of problems, including low-rank semidefinite optimization problems.
Joint work with A. Aravkin, J. Burke, D. Drusvyatskiy, S. Roy.
Biography: Michael P. Friedlander is a Professor of mathematics at the University of California, Davis. He received his PhD in Operations Research from Stanford University in 2002, and his BA in Physics from Cornell University in 1993. From 2002 to 2004 he was the Wilkinson Fellow in Scientific Computing at Argonne National Laboratory. He has held visiting positions at UCLA's Institute for Pure and Applied Mathematics (2010), and at Berkeley's Simons Institute for the Theory of Computing (2013). He serves on the editorial boards of SIAM J. on Optimization, SIAM J. on Matrix Analysis and Applications, SIAM J. on Scientific Computing, and Mathematical Programming Computation. His research is primarily in developing numerical methods for large-scale optimization, their software implementation, and applying these to problems in signal processing and machine learning.
Host: Mahdi Soltanolkotabi
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Munushian Seminar - Rahul Sarpeshkar, Friday, February 12th at 2:00pm in EEB 132
Fri, Feb 12, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Rahul Sarpeshkar, Dartmouth College
Talk Title: Analog and Stochastic Computation in Living Cells and Supercomputing Chips
Abstract: Despite more than 15 years of research, synthetic circuits in living cells have been largely limited to a handful of digital logic gates and have not scaled. We show that one important reason for this failure to scale is an overemphasis on digital abstractions rather than on recognizing the true noisy, analog, and probabilistic nature of biological circuits. We show that synthetic and natural DNA, RNA, and protein circuits in cells must use analog, collective analog, probabilistic, and hybrid analog-digital computational approaches to function; otherwise, even relatively simple computations in cells will exceed energy, molecular-count, and cellular-resource budgets.
Analog circuits in electronics and molecular circuits in cell biology are also deeply connected: There are astounding similarities between the equations that describe noisy electronic flow in subthreshold transistors and the equations that describe noisy molecular flow in chemical reactions, both of which obey the laws of exponential thermodynamics. Based on these similarities, it is possible to take a principled approach to design circuits in living cells. For example, we have engineered logarithmic analog computation in living cells with less than three transcription factors, almost two orders of magnitude more efficient than prior digital approaches to create a "bio-molecular slide rule". In addition, highly computationally intensive noisy DNA-protein and protein-protein networks can be rapidly simulated in mixed-signal supercomputing chips that naturally capture their noisiness, dynamics, and non-modular interactions at lightning-fast speeds. Such an approach may enable large-scale design, analysis, simulation, and measurement of cells to be more precise and robust than it is today. To realize the promise of synthetic biology and systems biology for medicine, biotechnology, agriculture, and energy, we will need to go back to the future of computation and design and implement circuits via a collective analog approach like Nature does. We must also exploit and develop existing analog and mixed-signal electronic design tools for enabling biological design to scale.
Biography: Rahul Sarpeshkar is the Thomas E. Kurtz Professor and a Professor in the departments of Engineering, Microbiology & Immunology, Physics, and Physiology & Neurobiology at Dartmouth College. His research creates novel wet DNA-protein circuits in living cells and also advanced dry nanoelectronic circuits on silicon chips. His longstanding work on analog and biological computation and his most recent work have helped pioneer the field of analog synthetic biology. His work on a glucose fuel cell for medical implants was featured by Scientific American among 2012's 10 World Changing Ideas.
He holds over 36 awarded patents and has authored more than 127 publication, including one that was featured on the cover of Nature. His recent book, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-inspired Systems revealed the deep connections between analog transistor circuits and biochemical circuits. His work has led to several first or best records in analog, bio-inspired, synthetic biology, medical device, ultra low power, and energy harvesting systems. His work has applications in implantable medical devices for the deaf, blind, and paralyzed and in biotechnology and medical applications that benefit from cellular engineering. He has received several awards including the NSF Career Award, the ONR Young Investigator Award, and the Packard Fellows Award. He received Bachelor's degrees in Electrical Engineering and Physics at MIT and PhD at CalTech. Before he joined Dartmouth's faculty, he was a tenured professor at MIT where he led the Analog Circuits and Biological Systems Group. Before he joined MIT, he was a member of the technical staff of Bell Labs' division of biological computation.
Host: EE-EP
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
MHI Distinguished Visitor Talk
Tue, Feb 16, 2016 @ 10:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Petros Maragos, School of E.C.E., National Technical University of Athens, Greece
Talk Title: Action and Gesture Recognition in Human-Robot Interaction
Abstract: In this talk we will present some advances from our research in the EU project MOBOT which generally aims at the development of an intelligent active mobility assistance robot. We will focus on one of its main goals: to provide multimodal sensory processing capabilities for human action recognition. Specifically, a reliable multimodal information processing and action recognition system needs to be developed, that will detect, analyze and recognize the human user actions based on the captured multimodal sensory signals and with a reasonable level of accuracy and detail for intelligent assistive robotics. One of the main thrusts in the above effort is the development of robust and effective computer vision techniques to achieve the visual processing goals based on multiple cues such as spatiotemporal RGB appearance data as well as depth data from Kinect sensors. Another major challenge is the integration of recognizing specific verbal and gestural commands in the considered human-robot interaction context. In this presentation we summarize advancements in three tasks of the above multimodal processing system for human-robot interaction (HRI): action recognition, gesture recognition and spoken command recognition. More information, related papers and current results can be found in http://cvsp.cs.ntua.gr and http://robotics.ntua.gr.
Biography: Petros Maragos received the Diploma in E.E. from the National Technical University of Athens (NTUA) in 1980 and the M.Sc. and Ph.D. degrees from Georgia Tech, Atlanta, in 1982 and 1985. In 1985, he joined the faculty of the Division of Applied Sciences at Harvard University, where he worked for eight years as professor of electrical engineering affiliated with the Harvard Robotics Lab. In 1993, he joined the faculty of the School of ECE at Georgia Tech. During periods of 1996-98 he had a joint appointment as director of research at the Institute of Language and Speech Processing in Athens. Since 1998, he has been working as a professor at the NTUA School of ECE. He has held a visiting scientist position at MIT LIDS in fall 2012. He is currently the Director of the NTUA Division of Signals, Control and Robotics, and the Director of the Intelligent Robotics and Automation Lab. His research and teaching interests include signal processing, systems theory, pattern recognition, image processing and computer vision, audio and speech/language processing, cognitive systems, and robotics. In the above areas he has published numerous papers, book chapters, and has also co-edited three Springer research books, one on multimodal processing and interaction and two on shape analysis. He has served as: Associate Editor for the IEEE Trans. on ASSP, IEEE Trans. on PAMI, and editorial board member and guest editor for several journals on signal processing, image analysis and vision; co-organizer of several conferences and workshops, including VCIP 1992 (GC), ISMM 1996 (GC), VLBV 2001 (GC), MMSP 2007 (GC), ECCV 2010 (PC), ECCV 2010 Workshop on Sign, Gesture and Activity, EUSIPCO 2012 (TC), 2011 & 2014 Dagstuhl Symposia on Shape, 2015 IROS Workshop on Cognitive Mobility Assistance Robots; member of the IEEE committees on DSP, IMDSP and MMSP. He is currently organizing EUSIPCO 2017 (GC).
His is the recipient or co-recipient of several awards for his academic work, including a 1983 Sigma Xi best thesis award, a 1987-1992 National Science Foundation Presidential Young Investigator Award, a 1988 IEEE SPS Young Author Best Paper Award, a 1994 IEEE SPS Senior Best Paper Award, the 1995 IEEE W.R.G. Baker Prize Award, the 1996 Pattern Recognition Society's Honorable Mention Award, the EURASIP 2007 Technical Achievement Award for contributions to nonlinear signal, image and speech processing, and the Best Paper Award of the IEEE CVPR-2011 Gesture Recognition Workshop. He was elected a Fellow of IEEE in 1995 and a Fellow of EURASIP in 2010 for his research contributions.
Host: Prof. Shrikanth Narayanan, Theodora Chaspari, and Zisis Skordilis
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Tanya Acevedo-Lam/EE-Systems
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
MHI Distinguished Visitor Talk
Wed, Feb 17, 2016 @ 02:00 PM - 04:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Petros Maragos, School of E.C.E., National Technical University of Athens, Greece
Talk Title: Signal Processing and Dynamical Systems on Weighted Lattices
Abstract: In this talk we will present a new unifying theoretical framework of nonlinear signal processing operators and dynamical systems that obey a superposition of a weighted max-min type and evolve on nonlinear spaces which we call complete weighted lattices. Special cases of such systems have found applications in morphological image analysis and vision scale-spaces, in control of discrete-event dynamical systems with minimax algebra, in speech recognition as weighted finite-state transducers, and in belief propagation on graphical models. Our theoretical approach establishes their representation in state and input-output spaces using monotone lattice operators, finds analytically their state and output responses using nonlinear convolutions of a weighted max-min type, studies their stability and reachability, and provides optimal solutions to solving max-min matrix equations. The talk will emphasize the main concepts and theoretical results in this broad field using weighted lattice algebra and will outline some application areas.
Biography: Petros Maragos received the Diploma in E.E. from the National Technical University of Athens (NTUA) in 1980 and the M.Sc. and Ph.D. degrees from Georgia Tech, Atlanta, in 1982 and 1985. In 1985, he joined the faculty of the Division of Applied Sciences at Harvard University, where he worked for eight years as professor of electrical engineering affiliated with the Harvard Robotics Lab. In 1993, he joined the faculty of the School of ECE at Georgia Tech. During periods of 1996-98 he had a joint appointment as director of research at the Institute of Language and Speech Processing in Athens. Since 1998, he has been working as a professor at the NTUA School of ECE. He has held a visiting scientist position at MIT LIDS in fall 2012. He is currently the Director of the NTUA Division of Signals, Control and Robotics, and the Director of the Intelligent Robotics and Automation Lab. His research and teaching interests include signal processing, systems theory, pattern recognition, image processing and computer vision, audio and speech/language processing, cognitive systems, and robotics. In the above areas he has published numerous papers, book chapters, and has also co-edited three Springer research books, one on multimodal processing and interaction and two on shape analysis. He has served as: Associate Editor for the IEEE Trans. on ASSP, IEEE Trans. on PAMI, and editorial board member and guest editor for several journals on signal processing, image analysis and vision; co-organizer of several conferences and workshops, including VCIP 1992 (GC), ISMM 1996 (GC), VLBV 2001 (GC), MMSP 2007 (GC), ECCV 2010 (PC), ECCV 2010 Workshop on Sign, Gesture and Activity, EUSIPCO 2012 (TC), 2011 & 2014 Dagstuhl Symposia on Shape, 2015 IROS Workshop on Cognitive Mobility Assistance Robots; member of the IEEE committees on DSP, IMDSP and MMSP. He is currently organizing EUSIPCO 2017 (GC).
His is the recipient or co-recipient of several awards for his academic work, including a 1983 Sigma Xi best thesis award, a 1987-1992 National Science Foundation Presidential Young Investigator Award, a 1988 IEEE SPS Young Author Best Paper Award, a 1994 IEEE SPS Senior Best Paper Award, the 1995 IEEE W.R.G. Baker Prize Award, the 1996 Pattern Recognition Society's Honorable Mention Award, the EURASIP 2007 Technical Achievement Award for contributions to nonlinear signal, image and speech processing, and the Best Paper Award of the IEEE CVPR-2011 Gesture Recognition Workshop. He was elected a Fellow of IEEE in 1995 and a Fellow of EURASIP in 2010 for his research contributions.
Host: Prof. Shrikanth Narayanan, Theodora Chaspari, and Zisis Skordilis
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Tanya Acevedo-Lam/EE-Systems
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Communications, Networks & Systems (CommNetS) Seminar
Wed, Feb 17, 2016 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Hao Yu, USC
Talk Title: A fast drift method for convex programs
Series: CommNetS
Abstract: This talk considers convex programs with a general (possibly non-differentiable) convex objective function and Lipschitz continuous convex inequality constraint functions. A simple algorithm is developed and achieves an $O(1/t)$ convergence rate. Similar to the classical dual subgradient algorithm and the ADMM algorithm, the new algorithm has a parallel implementation when the objective and constraint functions are decomposable. However, the new algorithm has faster $O(1/t)$ convergence rate compared with the best known $O(1/\sqrt{t})$ convergence rate for the dual subgradient algorithm with averaged primals. Further, it can solve convex programs with nonlinear constraints, which cannot be handled by the ADMM algorithm. The new algorithm is applied to a multipath network utility maximization problem and yields a decentralized flow control algorithm with fast $O(1/t)$ convergence rate.
Biography: Hao Yu is currently a PhD student in EE department at University of Southern California, advised by Prof. Michael J. Neely. He received the B.Eng. in Electrical Engineering from Xi'an Jiaotong University, China, and the Mphil. degree in Electrical Engineering from the Hong Kong University of Science and Technology, Hong Kong. His research interests are in the areas of design and analysis of optimization algorithms, network optimization and network coding.
Host: Prof. Rahul Jain
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
MHI Distinguished Visitor Talk
Thu, Feb 18, 2016 @ 02:00 PM - 04:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Petros Maragos, School of E.C.E., National Technical University of Athens, Greece
Talk Title: Audio-Visual Attention, Computational Saliency and Movie Summarization
Abstract: In this talk we will present an overview of ideas, methods and research results in multimodal sensory processing with emphasis on audio-visual signal fusion as applied to problems of attention and multimodal event detection for information summarization. We shall begin with a brief synopsis of important findings from audio-visual perception. Then we shall outline efficient signal processing front-ends and improved computational saliency models for audio and visual salient event detection, followed by fusion schemes for multimodal saliency estimation. This will lead to movie video summarization based on audio, visual, and text modalities. For objective evaluations we have developed a movie database, which includes sensory and semantic saliency annotation as well as cross-media relations. The above research has been conducted in the framework of the Greek basic research project COGNIMUSE.
More information, related papers and current results can be found in http://cvsp.cs.ntua.gr and http://cognimuse.cs.ntua.gr.
Biography: Petros Maragos received the Diploma in E.E. from the National Technical University of Athens (NTUA) in 1980 and the M.Sc. and Ph.D. degrees from Georgia Tech, Atlanta, in 1982 and 1985. In 1985, he joined the faculty of the Division of Applied Sciences at Harvard University, where he worked for eight years as professor of electrical engineering affiliated with the Harvard Robotics Lab. In 1993, he joined the faculty of the School of ECE at Georgia Tech. During periods of 1996-98 he had a joint appointment as director of research at the Institute of Language and Speech Processing in Athens. Since 1998, he has been working as a professor at the NTUA School of ECE. He has held a visiting scientist position at MIT LIDS in fall 2012. He is currently the Director of the NTUA Division of Signals, Control and Robotics, and the Director of the Intelligent Robotics and Automation Lab. His research and teaching interests include signal processing, systems theory, pattern recognition, image processing and computer vision, audio and speech/language processing, cognitive systems, and robotics. In the above areas he has published numerous papers, book chapters, and has also co-edited three Springer research books, one on multimodal processing and interaction and two on shape analysis. He has served as: Associate Editor for the IEEE Trans. on ASSP, IEEE Trans. on PAMI, and editorial board member and guest editor for several journals on signal processing, image analysis and vision; co-organizer of several conferences and workshops, including VCIP 1992 (GC), ISMM 1996 (GC), VLBV 2001 (GC), MMSP 2007 (GC), ECCV 2010 (PC), ECCV 2010 Workshop on Sign, Gesture and Activity, EUSIPCO 2012 (TC), 2011 & 2014 Dagstuhl Symposia on Shape, 2015 IROS Workshop on Cognitive Mobility Assistance Robots; member of the IEEE committees on DSP, IMDSP and MMSP. He is currently organizing EUSIPCO 2017 (GC).
His is the recipient or co-recipient of several awards for his academic work, including a 1983 Sigma Xi best thesis award, a 1987-1992 National Science Foundation Presidential Young Investigator Award, a 1988 IEEE SPS Young Author Best Paper Award, a 1994 IEEE SPS Senior Best Paper Award, the 1995 IEEE W.R.G. Baker Prize Award, the 1996 Pattern Recognition Society's Honorable Mention Award, the EURASIP 2007 Technical Achievement Award for contributions to nonlinear signal, image and speech processing, and the Best Paper Award of the IEEE CVPR-2011 Gesture Recognition Workshop. He was elected a Fellow of IEEE in 1995 and a Fellow of EURASIP in 2010 for his research contributions.
Host: Prof. Shrikanth Narayanan, Theodora Chaspari, and Zisis Skordilis
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Tanya Acevedo-Lam/EE-Systems
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Better and Faster Images of the Thinking Brain
Fri, Feb 19, 2016 @ 10:30 AM - 11:30 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Douglas C. Noll, Ph.D., University of Michigan
Talk Title: Better and Faster Images of the Thinking Brain
Series: Medical Imaging Seminar Series
Abstract: Functional brain imaging using MRI (functional MRI or fMRI) has been available for about 20 years, and yet the technology of fMRI has continued to evolve quite rapidly. In this presentation, I will present that basic physiology and methods for fMRI and then discuss several advances to acquisition and image reconstruction for fMRI. I will explore a new approach for fMRI that reuses the MRI signal, thus potentially improving the signal strength and signal-to-noise ratio of fMRI studies. The technology of MRI excitation required to implement this approach will be discussed. I will also discuss and demonstrate a method to acquire multiple simultaneous slices using a non-Cartesian acquisition method. Lastly, I will discuss a new image acquisition and reconstruction approach that makes use of mathematical concepts in sparse sampling and low-rank signal representations. This approach has the potential to speed substantially the fMRI acquisition to allow the separation of undesired physiological signals and the imaging of dynamic network processes in the human brain.
Host: Prof. Krishna Nayak
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Talyia Veal
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
EE-EP Seminar - Kejie Fang, Friday, February 19th at 2:00pm in EEB 132
Fri, Feb 19, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Kejie Fang, California Institute of Technology
Talk Title: Integrated Hybrid Photonics-”Emergent Control and Application for Light and Sound at Nanoscale
Abstract: The bottleneck of bandwidth limitation and power dissipation in today's electronic microchips is conflicting with the exceeding demand for information communication and processing. Light, due to its intrinsic high frequency and environment-insensitivity (owing to its charge neutrality), is expected to bring solutions to this fundamental challenge. By the same token, certain functionalities in optical information processing will require a hybrid architecture interfacing different materials and light-matter interactions. With technical advances in nanofabrication, it is now possible to manipulate light and enhance light-matter interactions in on-chip, nanoscale photonic structures.
In this talk, I will present my research in two integrated hybrid photonic architectures. First is optoelectronic integration, where we achieved novel active control of light through an electric drive which dynamically modulates the refractive index of silicon photonic structures, leading to an effective magnetic field for photons and topological light propagation. These novel interactions are unreachable in static or passive dielectrics and provide a solution for on-chip optical isolation that is essential for stable and energy efficient optical communication. In the second part of my talk, I will present work on another hybrid architecture that interfaces light and sound: optomechanical crystals. This architecture allows for simultaneously engineering of optical and mechanical properties as well as photon-phonon interactions. Combining electron beam lithography and scanning probe microscope tuning, we fabricated cavity-optomechanical circuits on silicon microchips to realize radiation-pressure controlled microwave phonon routing. We applied these devices for microwave-over-optical signal processing with low energy and high efficiency. The nanoscale mechanical vibration is also used to achieve optical non-reciprocity in the optomechanical circuit. These achievements hold promise for hybrid photonic technology for light-based communication and processing in an integrated, chip-scale platform.
Biography: Kejie Fang is a Postdoctoral Scholar in Applied Physics at California Institute of Technology, working with Prof. Oskar Painter. He received his B.S. in physics from Peking University, and his M.S. in electrical engineering, Ph.D. in physics, both from Stanford University under the supervision of Prof. Shanhui Fan. Kejie's research interests include optomechanics, nanophotonics, and spin photonics, with a theme to develop novel chip scale devices and systems for light-based applications including optical information communication and processing. During his Ph.D., he proposed and demonstrated for the first time an effective magnetic field for photons which provides a solution for on-chip optical isolation. At Caltech, he developed integrated cavity-optomechanical circuits for on-chip information processing using nanoscale optical and acoustic excitations. Kejie has published 15 peer-reviewed papers in leading journals including Nature Photonics, Physical Review Letters, and Nature Communications. Kejie was a William R. and Sara Hart Kimball Fellow at Stanford University and also a recipient of OSA Outstanding Reviewer Award in 2014.
Host: EE-Electrophysics
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Communications, Networks & Systems (CommNetS) Seminar
Wed, Feb 24, 2016 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Hao Li, USC
Talk Title: Digitizing Humans into VR with a Glimpse into Deep Learning Applications
Series: CommNetS
Abstract: The age of social media and immersive technologies has created a growing need for processing detailed visual representations of ourselves. With recent advancements in graphics, we can now generate highly realistic digital characters for games, movies, and virtual reality. However, creating compelling digital content is still associated with a complex and manual workflow. While cutting-edge computer vision algorithms can detect and recognize humans reliably, obtaining functional digital models and their animations automatically still remains beyond reach. Such models are not only visually pleasing but would also bring semantical structure into the captured data, enabling new possibilities such as intuitive data manipulation and machine perception. With the democratization of 3D sensors, many difficult vision problems can be turned into geometric ones, where effective data-driven solutions exist. My research aims at pushing the boundaries of data-driven digitization of humans and developing frameworks that are accessible to anyone. Such system should be fully unobtrusive and operate in fully unconstrained environments. With these goals in mind, I will showcase several highlights of our current research efforts from dynamic shape reconstruction, human body scanning, facial capture, and the digitization of human hair. By the end of this decade, our homes will be equipped with 3D sensors that digitally monitor our actions, habits, and health. These advances will help machines understand our appearances and movements, revolutionizing the way we interact with computers, and developing new forms of live communication through compelling virtual avatars.
Biography: Hao Li joined USC in 2013 as an assistant professor of Computer Science. Before his faculty appointment he was a research lead at Industrial Light & Magic/Lucasfilm, where he developed the next generation real-time performance capture technologies for virtual production and visual effects. Prior to joining the force, Hao spent a year as a postdoctoral researcher at Columbia and Princeton Universities. His research lies in geometry processing, 3D reconstruction, performance capture, a human hair digitization. While primarily developed to improve film production, his work on markerless dynamic shape reconstruction has also impacted the field of human shape analysis and biomedicine. His algorithms are widely deployed in the industry, ranging from leading visual effects studios to manufacturers of state-of-the-art radiation therapy systems. He has been named top 35 innovator under 35 by MIT Technology Review in 2013 and NextGen 10: Innovators under 40 by CSQ in 2014. He was also awarded the Google Faculty Award in 2015, the SNF Fellowship for prospective researchers in 2011, and best paper award at SCA 2009. He obtained his PhD from ETH Zurich in 2010 and received his MSc degree in Computer Science in 2006 from the University of Karlsruhe (TH). He was a visiting professor at Weta Digital in 2014 and visiting researcher at EPFL in 2010, Industrial Light & Magic (Lucasfilm) in 2009, Stanford University in 2008, National University of Singapore in 2006, and ENSIMAG in 2003.
Host: Dr. Mahdi Soltanolkotabi
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
EE-EP Seminar - Dina El-Damak, Friday, Feb. 26th at 2:00pm in EEB 132
Fri, Feb 26, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dina El-Damak, Massachusetts Institute of Technology
Talk Title: Empowering the IoT: Energy Scavenging and Ultra-low Power Processing
Abstract: The internet of things (IoT) is driving a new computing era by enabling the wireless connectivity of nearly everything we use. Vehicles, appliances, civil- engineering structures, manufacturing equipment, livestock and even our own bodies will have embedded sensors that report information directly to networked servers, aiding with maintenance and the coordination of tasks. The creativity in this new era of the IoT is boundless, with amazing potential to immensely improve human life. Realizing that vision, however, will require extremely low-power sensing systems that can run for months without battery changes - or, even better, that can extract energy from the environment to recharge. Moreover, the flexibility and the miniaturization of such systems are highly desirable to ease their integration with various structures. Thus, the future growth of the IoT will be contingent upon innovations in ultra- low power circuit design techniques, system architecture, as well as novel material technologies.
In the first part of this talk, I will present the design of a power management IC that can operate efficiently with input power in the range of 10 nW to 1uW with 3.2nW quiescent power consumption for energy harvesting applications. The asynchronous architecture, subthreshold operation, power-gating and dynamic pulse-width control enabled a peak efficiency greater than 80%. In the second part of the talk, I will show the results of an integrated power management IC using on-chip ferroelectric capacitors for dynamic voltage scaling. The integration of ferroelectric materials with silicon CMOS technology allowed the design of highly efficient switched capacitor DC- DC converter with a peak efficiency of 93%. In the last part of the talk, I will focus on circuit design using the flexible Molybdenum Disulfide (MoS2 ) - one of the emerging two-dimensional materials. I will touch upon our system design flow - which is validated by the design and testing of various combinational logic and sequential circuits. Measurement results demonstrating fully-functional prototypes will be shown and future application opportunities will be discussed.
Biography: Dina El-Damak received the S.M. and Ph.D. degrees in Electrical Engi- neering and Computer Science from the Massachusetts Institute of Technology (MIT) in 2012 and 2015 respectively, and the B.Sc. and M.Sc. degrees in Electronics and Electrical Communication Engineering from Ain Shams University, Cairo, Egypt. She is currently a postdoctoral associate in the Energy-Efficient Circuits and Systems Group at MIT working under the supervision of Prof. Anantha Chandrakasan. Dr. El-Damak was the recipient of Texas Instruments Graduate Woman's Fellowship for leadership in microelectronics for the academic years 2012-2013 and 2013-2014. Her research interests include energy harvesting, power management circuits and ultra-low power biomedical systems.
Host: EE-Electrophysics
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
Spatial Light Interference Microscopy (SLIM) for Quantitative Biomedicine
Mon, Feb 29, 2016 @ 11:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Gabriel Popescu, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
Talk Title: Spatial Light Interference Microscopy (SLIM) for Quantitative Biomedicine
Series: Medical Imaging Seminar Series
Abstract: Most living cells do not absorb or scatter light significantly, i.e. they are essentially transparent, or phase objects. Phase contrast microscopy proposed by Zernike in the 1930s represents a major advance in intrinsic contrast imaging, as it reveals inner details of transparent structures without staining or tagging. While phase contrast is sensitive to minute optical path-length changes in the cell, down to the nanoscale, the information retrieved is only qualitative. Quantifying cell-induced shifts in the optical path-lengths permits nanometer scale measurements of structures and motions in a non-contact, non-invasive manner. Thus, quantitative phase imaging (QPI) has recently become an active field of study and various experimental approaches have been proposed.
Recently, we have developed Spatial Light Interference microscopy (SLIM) as a highly sensitive QPI method. Due to its nanometer pathlength sensitivity, SLIM enables interesting structure and dynamics studies over broad spatial (nanometers-centimeters) and temporal (milliseconds-weeks) scales. I will review our recent results on applying SLIM to basic cell studies, such as intracellular transport, cell growth, and single cell tomography. Recently, we have demonstrated that SLIM is a valuable tool for cancer diagnosis and prognosis in unlabeled biopsies. This capability is particularly valuable in prostate pathology.
Biography: Gabriel Popescu is an Associate Professor in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign. He received the B.S. and M.S. in Physics from University of Bucharest, in 1995 and 1996, respectively, obtained his M.S. in Optics in 1999 and the Ph.D. in Optics in 2002 from the School of Optics/ CREOL (now the College of Optics and Photonics), University of Central Florida. Dr. Popescu continued his training with the G. R. Harrison Spectroscopy Laboratory at M.I.T., working as a postdoctoral associate. He joined Illinois in August 2007 where he directs the Quantitative Light Imaging Laboratory (QLI Lab) at the Beckman Institute for Advanced Science and Technology. Dr. Popescu is an Associate Editor of Optics Express and Biomedical Optics Express, and Editorial Board Member for Journal of Biomedical Optics and Scientific Reports. He authored a book, edited another book, authored 118 journal publications, 175 conference presentations, 32 patents, gave 150 invited talks. Dr. Popescu founded Phi Optics, Inc., a start-up company that commercializes quantitative phase imaging technology. He is OSA Fellow and SPIE Fellow.
Host: Professor Justin Haldar
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Talyia Veal
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
EE-EP Seminar - Hui Fang, Monday, February 29th at 2:00pm in EEB 132
Mon, Feb 29, 2016 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Hui Fang, University of Illinois
Talk Title: Advanced Electronic Materials for Next-Generation Biomedical Implants and Bio tools
Abstract: Innovating electronic materials and related process technologies are critical in building next generation large scale, bio-electronic interface for biomedical implants and bio-tools.
In this talk, the influence of materials and process innovation will be discussed in the context of achieving two essential properties at the bio-electronic interface, bio conformality and bio stability. First, to reconcile the mechanic properties mismatch between soft, curvilinear organ surface and conventional rigid, planar electronics, Si nanomembrane enables bio conformal electronics from top down approach and advanced micro/nano fabrication on flexible substrates. In the second part of the talk, I will discuss how to achieve long term bio-stability at the bio-electronic interface through an ultrathin hermetic thermal silicon dioxide layer from a special device fabrication process. A capacitively coupled, bio-conformal sensing electronics with over 1,000 channels demonstrate the robustness of this encapsulation strategy. Together, these results form a realistic pathway towards bio compatible, bio conformal and bio stable electronic implants, with potential for broad utility, such as brain/heart activity mapping, brain-machine interface, and pharmaceutical screening. At the end of my talk, I will show how we can leverage recent advancements in nano electronics into building next generation bio electronics and solve big problems in biology, especially in brain activity mapping.
Biography: Dr. Hui Fang received his B.S. degree (2009) from Tsinghua University, and Ph.D. degree (2014) from the University of California, Berkeley, both in Materials Science and Engineering. At Berkeley he worked under the supervision of Prof. Ali Javey. Currently Dr. Fang is a postdoctoral research associate in Professor John A. Rogers' group at the University of Illinois, Urbana Champaign. Dr. Fang's research interests include developing novel materials, devices and related process technologies for bio-integrated electronics and nano electronics, as well as exploring new materials/device physics at the nanoscale. Dr. Fang is a recipient of the 2013 Chinese Government Award for Outstanding Self-financed Students Abroad. His publication record can be found online at http://publish.illinois.edu/huifangnano/.
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.