Conferences, Lectures, & Seminars
Events for January
-
AME Seminar
Wed, Jan 16, 2019 @ 11:00 AM - 12:00 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Maziar Hemati, University of Minnesota
Talk Title: Flow control a la mode
Abstract: Biological flyers and swimmers have a great capacity for interacting with their fluid environments. This ability is demonstrated through the agility, efficiency, and environmental awareness exhibited by numerous creatures, including birds, fish, and insects. While human-engineered systems have benefited from biological inspiration, the performance gains realized have often fallen short of their full potential. A primary limitation to attaining further improvement has been a scarcity of reliable low-dimensional fluid dynamics models, which are often needed (1) to determine the state of a complex flow from available on-board sensors (i.e., flow sensing), and (2) to exploit that knowledge to determine and execute a best course of action for achieving a desired objective (i.e., feedback control). In this talk, we will consider modal decomposition strategies aimed at obtaining low-dimensional dynamical systems models from empirical data. In particular, we will present recent advances in techniques tailored to extract descriptive insights and predictive models from large, streaming, and noisy datasets. The second half of the talk will present a dynamic mode shaping perspective for feedback flow control synthesis. The perspective will be used to highlight a fundamental performance limitation inherent to standard observer-based control structures, suggesting that flow reconstruction from sensor measurements may be inadvisable in some flow control applications.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Location: Seaver Science Library (SSL) - 150
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME Seminar
Wed, Jan 23, 2019 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Paul Plucinsky, Postdoctoral researcher University of Minnesota
Talk Title: Active and architectured structures: From nematic elastomers sheets to rigidly-foldable origami
Abstract: Thin and slender structures exhibit a broad range of mechanical responses as the competition between stretching and bending in these structures can result in buckling, localized deformations like folding, and tension wrinkling. Active and architectured materials also exhibit a broad range of mechanical responses as features that manifest at the micro and mesoscale in these materials result in mechanical couplings at the engineering scale (thermal/electrical/dissipative/. . .) and novel function (e.g., the shape memory effect, piezoelectricity in select metal alloys, the immense fracture toughness of Nacre and like materials,. . .). Given this richness in behaviors, my research
broadly aims to address the following questions: What happens when active and architecture materials are incorporated into a thin and slender structures? Do phenomena inherent to these materials compete with or enhance those inherent to these structures? Does this interplay result in entirely new and unexpected phenomena? And can all this be exploited to design new functionality in engineering systems?
In this talk, I will explore these questions in the context of thin sheets of an active material in nematic elastomer as well as architectured sheets designed to fold continuously as origami. For the latter, I will completely characterize all rigidly and flat-foldable origami, and describe an efficient algorithm to compute their designs and deformations. For the former, I will show that a material instability inherent to nematic elastomers at the micron scale is capable of suppressing a structural instability (wrinkling) at the engineering scale. These results provide novel, yet concrete, design guidance for improving the efficiency solar sails and the performance of other membrane structures (where wrinkling can be an impediment to their functionality), as well as tools to efficiently investigate robust and elegant concepts for deployable space structures, reconfigurable antennas, and soft robotics using origami.
Biography: Paul Plucinsky is a postdoctoral researcher studying the mechanics of Origami, helical structures and shape memory alloys at the University of Minnesota. He attended University of Michigan, receiving a Bachelors of Science in Civil Engineering (2010) and and Masters of Science in Structural Engineering (2011). He then moved to Caltech, where he received a Ph.D in Mechanical Engineering (2017) studying the deformations of thin nematic elastomer sheets. When not folding paper-”and when his Achilles in functioning properly-”you can often find him on the basketball court.
Host: AME Department
Location: Seaver Science Library (SSL) - 150
Audiences: Everyone Is Invited
Contact: Tessa Yao
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.