Conferences, Lectures, & Seminars
Events for January
-
AME Seminar
Wed, Jan 18, 2023 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Jeff Moehlis, Professor and Chair, Department of Mechanical Engineering University of California at Santa Barbara
Talk Title: Controlling Populations of Neural Oscillators
Abstract: Many challenging problems that consider the analysis and control of neural brain rhythms have been motivated by the advent of deep brain stimulation as a therapeutic treatment for a wide variety of neurological disorders. In a computational setting, neural rhythms are often modeled using large populations of coupled, conductance-based neurons. Control of such models comes with a long list of challenges: the underlying dynamics are nonnegligibly nonlinear, high dimensional, and subject to noise; hardware and biological limitations place restrictive constraints on allowable inputs; direct measurement of system observables is generally limited; and the resulting systems are typically highly underactuated. In this talk, I highlight a collection of recent analysis techniques and control frameworks that have been developed to contend with these difficulties. Particular emphasis is placed on the problem of desynchronization for a population of pathologically synchronized neural oscillators, a problem that is motivated by applications to Parkinson's disease where pathological synchronization is thought to contribute to the associated motor control symptoms.
Biography: Jeff Moehlis received a Ph.D. in Physics from UC Berkeley in 2000, and was a Postdoctoral Researcher in the Program in Applied and Computational Mathematics at Princeton University from 2000-2003. He joined the Department of Mechanical Engineering at UC Santa Barbara in 2003, and is currently Chair of this department. He was also recently the Chair of the Program in Dynamical Neuroscience at UC Santa Barbara. He has been a recipient of a Sloan Research Fellowship in Mathematics and a National Science Foundation CAREER Award, and was Program Director of the SIAM Activity Group in Dynamical Systems from 2008-2009. Jeff's current research includes applications of dynamical systems and control techniques to neuroscience, cardiac dynamics, and collective behavior. He has published over 100 journal / conference proceedings articles on these and other topics including shear flow turbulence, microelectromechanical systems, energy harvesting, and dynamical systems with symmetry.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95805178776?pwd=aEtTRnQ2MmJ6UWE4dk9UMG9GdENLQT09Location: John Stauffer Science Lecture Hall (SLH) - 102
WebCast Link: https://usc.zoom.us/j/95805178776?pwd=aEtTRnQ2MmJ6UWE4dk9UMG9GdENLQT09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME Seminar
Wed, Jan 25, 2023 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Steven L. Brunton, Professor of Mechanical Engineering Department of Mechanical Engineering University of Washington Seattle, WA
Talk Title: Machine Learning for Scientific Discovery, with Examples in Fluid Mechanics
Abstract: Accurate and efficient nonlinear dynamical systems models are essential to understand, predict, estimate, and control complex natural and engineered systems. In this talk, I will explore how machine learning may be used to develop these models purely from measurement data. We explore the sparse identification of nonlinear dynamics (SINDy) algorithm, which identifies a minimal dynamical system model that balances model complexity with accuracy, avoiding overfitting. This approach tends to promote models that are interpretable and generalizable, capturing the essential physics of the system. We also discuss the importance of learning effective coordinate systems in which the dynamics may be expected to be sparse. This sparse modeling approach will be demonstrated on a range of challenging modeling problems, for example in fluid dynamics. Because fluid dynamics is central to transportation, health, and defense systems, we will emphasize the importance of machine learning solutions that are interpretable, explainable, generalizable, and that respect known physics.
Biography: Steven L. Brunton is a Professor of Mechanical Engineering at the University of Washington. He is also Adjunct Professor of Applied Mathematics and Computer science, and a Data Science Fellow at the eScience Institute. Steve received the B.S. in mathematics from Caltech in 2006 and the Ph.D. in mechanical and aerospace engineering from Princeton in 2012. His research combines machine learning with dynamical systems to model and control systems in fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He received the Army and Air Force Young Investigator Program (YIP) awards and the Presidential Early Career Award for Scientists and Engineers (PECASE). Steve is also passionate about teaching math to engineers as co-author of three textbooks and through his popular YouTube channel, under the moniker eigensteve.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95805178776?pwd=aEtTRnQ2MmJ6UWE4dk9UMG9GdENLQT09More Information: Screenshot 2023-01-11 140424.jpg
Location: John Stauffer Science Lecture Hall (SLH) - 102
WebCast Link: https://usc.zoom.us/j/95805178776?pwd=aEtTRnQ2MmJ6UWE4dk9UMG9GdENLQT09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.