Conferences, Lectures, & Seminars
Events for April
-
AME Seminar
Wed, Apr 03, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Julio Chirinos, University of Pennsylvania
Talk Title: Role of Arterial Stiffness and Pulsatile Hemodynamics in Target Organ Damage: Implications for Human Health
Abstract: The normal aorta exerts a powerful cushioning function, which limits arterial pulsatility and protects the microvasculature from excessive fluctuations in pressure and blood flow. Large-artery stiffening, which occurs with aging and various pathologic states, impairs this cushioning function, and has important consequences on target organs, including the brain, the heart, the kidneys and the placenta. Arterial stiffness also appears to be implicated in the pathogenesis of cardiometabolic disease. Large-artery stiffness represents a high-priority therapeutic target to ameliorate the global burden of cardiovascular disease in the next several decades. We will discuss key physiologic and biophysical principles related to arterial stiffness and the impact of aortic stiffening on target organs and associated disease states.
Biography: Julio A. Chirinos, MD, PhD is a Professor of Medicine in the Cardiovascular Division, Co-Director of the Clinical Research T32 Training Program in Cardiovascular Biology and Medicine, and Adjunct Faculty at the Center for Magnetic Resonance and Optical Imaging, at the University of Pennsylvania Perelman School of Medicine. He is a specialist in cardiac imaging (echocardiography and cardiac magnetic resonance imaging). He is also adjunct Faculty at the University of Ghent in Belgium, where he maintains an active collaboration with the Asklepios Investigators. His PhD was focused on the non-invasive assessment of arterial hemodynamics. He is the President of the North American Artery Society. He directs an NIH-funded research program focused on the role of arterial stiffness and pulsatile hemodynamics in cardiovascular disease, mechanisms of human heart failure with preserved ejection fraction (HFpEF) and the use of proteomics to discern mechanisms of human heart failure. He currently leads clinical studies designed to therapeutically target the arterial tree in order to reduce maladaptive cardiac remodeling, diastolic dysfunction, and to treat patients with HFpEF, an epidemic condition for which limited effective proven pharmacologic therapies are currently available. He also leads various cohort studies with deep cardiovascular phenotyping aimed at characterizing phenotypic profiles in humans. He co-leads a Global Heart Failure biomarker consortium, an industry-academic collaboration investigating proteomics and genomics in human heart failure. He is the University of Pennsylvania Principal Investigator and a Steering Committee member of Heart Share, a multicenter research consortium funded by the NHLBI aimed at discerning mechanisms of disease in human Heart Failure with Preserved Ejection Fraction. Dr. Chirinos has published >250 papers in high-impact journals, including the New England Journal of Medicine, New England Journal of Medicine Evidence, The Lancet, The Lancet Respiratory Medicine, Journal of the American Medical Association (JAMA), Circulation, Hypertension, and Journal of the American College of Cardiology (JACC). He has received awards or honorary fellowships from the American Heart Association, the Inter-American Society of Cardiology, the American Society of Hypertension and the European Society of Cardiology. He is a member of the American Society of Clinical Investigation and an honorary member of the Korean Society of Cardiology. He has also received multiple research grants from the National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Institutes for Advancing Translational Sciences (NCATS), the American College of Radiology (ACR), and the American Heart Association (AHA), among others. He was one of 20 global members of the Lancet Commission for Hypertension, in charge of developing strategies and recommendations to reduce the global burden of hypertension. He has participated in various clinical expert committees for the American Heart Association, American Society of Echocardiography, European Society of Cardiology, American Society of Hypertension and European Association of Cardiovascular Imaging. During the COVID-19 pandemic, Dr. Chirinos led 2 international multicenter trials testing therapeutic strategies related to the intersection of COVID-19 and cardiovascular disease. He is also the co-PI of ongoing cohort studies to study the long-term cardiovascular consequences of COVID-19, co-chair of the Global Heart Failure Biomarker Consortium, and a Steering Committee Member of HeartShare. Both of these multicenter consortia are focused on the study of heart failure with preserved ejection fraction (HFpEF). He is currently the President of the North American Artery society, which promotes the study of arterial function as a determinant of cardiovascular disease. He was also an Associate Editor of the American Heart Association Journal Circulation: Heart Failure, The Journal of Clinical Hypertension, Editor of the Cochrane Group (Cochrane Collaboration), Senior Consulting Editor of the Journal of the American College of Cardiology: Cardiovascular Imaging and a member of the editorial board of the Journal of the American Heart Association, Pulse and the Journal of Geriatric Cardiology. He is the editor of a textbook on Arterial Stiffness and Pulsatile Hemodynamics (Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease; Elsevier, 2022). Dr. Chirinos also directs a core analysis laboratory for assessments of cardiac and arterial structure and function with non-invasive imaging, which has served as the core lab for various multicenter studies, including population studies, American College of Radiology Network studies and industry-funded studies. He has been an invited speaker in >160 scientific sessions.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME Seminar
Wed, Apr 10, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Michael Posa, University of Pennsylvania
Talk Title: Do we really need all that data? Learning and control for contact-rich manipulation
Abstract: For all the promise of big-data machine learning, what will happen when robots deploy to our homes and workplaces and inevitably encounter new objects, new tasks, and new environments? If a solution to every problem cannot be pre-trained, then robots will need to adapt to this novelty. Can a robot, instead, spend a few seconds to a few minutes gathering information and then accomplish a complex task? Why does it seem that so much data is required, anyway? I will first argue that the hybrid or contact-driven aspects of manipulation clashes with the inductive biases inherent in standard learning methods, driving this current need for large data. I will then show how contact-inspired implicit learning, embedding convex optimization, can reshape the loss landscape and enable more accurate training, better generalization, and ultimately data efficiency. Finally, I will present our latest results on how these learned models can be deployed via real-time multi-contact MPC for dexterous robotic manipulation, where the robot must autonomously make and break contact and initiate stick-slip transitions.
Biography: Michael Posa is an Assistant Professor in Mechanical Engineering and Applied Mechanics at the University of Pennsylvania. He leads the Dynamic Autonomy and Intelligent Robotics (DAIR) lab, a group within the Penn GRASP laboratory. His group focuses on developing computationally tractable algorithms to enable robots to operate both dynamically and safely as they interact with their environments. Michael received his Ph.D. in Electrical Engineering and Computer Science from MIT in 2017 and received his B.S. in Mechanical Engineering from Stanford University in 2007. Before his doctoral studies, he worked as an engineer at Vecna Robotics. He received the NSF CAREER Award in 2023, the RSS Early Career Spotlight in 2023, a Google Faculty Research Award, and a Young Faculty Researcher Award from the Toyota Research Institute. His work has also received awards recognition at TRO, ICRA, Humanoids, and HSCC.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME Seminar
Wed, Apr 17, 2024 @ 03:30 PM - 12:00 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Jasna Brujic, NYU
Talk Title: Colloidal protein analogs
Abstract: Our group is inspired by Nature’s strategy of folding biopolymers into specific protein and RNA structures to build a toy model of polymeric chains of droplets, i.e. “colloidomers”, that are designed via DNA interactions to fold into well-defined architectures. Indeed, simple alternating chains (up to 14 droplets long) with only two droplet flavors (ABABAB…) are sufficient to uniquely encode a dozen “foldamers”, constituting 1% of all possible rigid structures in 2D. Subsequently, these 2D foldamers can self-assemble into larger nets that, upon density-matching, are able to further fold into unique 3D geometries, for example viral capsids. These hierarchical protocols circumvent the vast phase space of the nominal folding landscape, in which a random cluster of 12 particles has tens of thousands or rigid folds to choose from. Once the colloidal protein analog is formed, it can then be further programmed by the polymerase-exonuclease-nickase (PEN) toolbox of enzymes that interact with droplet-droplet DNA bonds, to produce highly non-linear dynamical systems. These "mayonnaise robots” promise to offer a bright and functional future on the colloidal length scale.
Biography:
Jasna Brujic is a Professor of Physics at New York University. She is one of the core faculty in the Center for Soft Matter Research. Brujic is an experimental physicist, who received her Ph.D. for work on the statistical mechanics of granular matter at the Cavendish Laboratory of the University of Cambridge, UK. She then conducted post-doctoral research at Columbia University in the area of single molecule proteins. Since 2007, Brujic has led a research group at the interface between soft matter physics and biophysics. The group uses biomimetic emulsion systems to study jammed matter, cellular organization in tissues in 3D, protein-protein adhesion, and programmable self-assembly of materials with custom designs.
https://wp.nyu.edu/brujiclab/
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME532A AIRCRAFT DYNAMICS AND CONTROLS STUDENT PRESENTATIONS
Tue, Apr 23, 2024 @ 06:00 PM - 08:40 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: AME 532A students, USC AME
Talk Title: AME532A AIRCRAFT DYNAMICS AND CONTROLS STUDENT PRESENTATIONS
Abstract: THE AEROSPACE AND MECHANICAL ENGINEERING DEPARTMENT INVITES YOU TO A SERIESOF PRESENTATIONS FROM OUR GRADUATE STUDENTS WHO HAVE STUDIED AIRCRAFTSIMULATION, DYNAMICS, AND CONTROLS IN THE SPRING OF 2024.PLEASE RSVP AT THE EMAIL BELOW FOR DETAILS ON ATTENDANCE, INCLUDING THE WEBEXLINK FOR REMOTE ATTENDANCE OPTIONS.TOPICS TO INCLUDE: TAKEOFF/LANDING, CAMERA CONTROLS, MONTE CARLO SIMS,LEAVING THE ATMOSPHERE, DYNASTAT, AIRSPACE MANAGEMENT, AND MORE
AGENDA
4:30PM – Pizza/Drinks at USC (South West Part of Campus)
6:00PM – Presentations Begin (In Person and On Webex)
8:40PM – Presentations End
Host: Prof. John McArthur of AME
More Information: StudentPresentations_Invitation_2024_v1.pdf
Location: TBD
Audiences: Please RSVP to JMCARTHU@USC.EDU
Contact: Tessa Yao
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
AME Seminar
Wed, Apr 24, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Adam Fincham, USC
Talk Title: The Effect of Reef Geometry On Breaking Wave Shape. Computational and Field Data Comparative Study
Abstract: With growing demand for inland surfing and interest in artificial surf reefs, CFD methods supplemented with field data constitute an effective tool that allows for analysis, optimization, and verification of the design performance of surfing waves. Bringing surfing to non-coastal areas provides big opportunities for a new market. This led to the formation of a new sub-genre of hydrodynamics engineering, where one is looking at transformation of shallow-water waves through a slightly different lens. In classical coastal engineering, wave characteristics can affect various design conditions of certain structures – however, in the following case, one is looking specifically into analysis, optimization, and verification of design performance of the surf-zone wave itself, i.e. its surfability aspect. This presentation provides a high-level overview of the scientific process behind the creation of the Kelly Slater Wave Company basin in Lemoore, CA. Some details of the new and much larger wave basin opening in Abu Dhabi, where excess energy from the main wave is reformed and broken again providing a secondary surfing experience will also be discussed.
Biography: Adam Fincham is a Scientist, Engineer and an Entrepreneur. Dr. Fincham is currently the Chief Scientist and Engineer for the World Surf League’s (WSL) Kelly Slater Wave Company (KSWC). He is a Research Associate Professor of Aerospace and Mechanical Engineering at USC. He has successfully founded two technology companies and is the primary named inventor on dozens of US and International Patents.
Fincham’s research interests include; Geophysical Fluid dynamics, turbulence and vortex structures in stratified and/or rotating flows, advanced algorithms for Digital Particle Imaging Velocimetry, particle dynamics in turbulent flows with application to oceanic plankton ecosystems, sonic boom interactions with the ocean surface, turbulent combustions at high Reynolds numbers, surfing wave dynamics, wave erosion and Computational Fluid Mechanics approaches to resolving breaking waves.
Fincham is from the island of Jamaica, he obtained his PhD in 1994 at the University of Southern California and was Chargé de Recherche at the Laboratoire des Ecoulements Geophysiques et Industriels, CNRS-INPG, Universite Joseph-Fourier, Grenoble, France. From 1995-2004. He has close ties to the University of the West Indies in Kingston Jamaica and interacts with scientists there.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.