Logo: University of Southern California

Events Calendar



Select a calendar:



Filter October Events by Event Type:


SUNMONTUEWEDTHUFRISAT
29
30
1
3
4
5

6
7
8
10
11
12

13
14
15
17
18
19

20
21
22
24
25
26

27
28
29
30
31
1
2


Conferences, Lectures, & Seminars
Events for October

  • AME Seminar

    Wed, Oct 02, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Andres Jared Goza, University of Illinois Urbana-Champaign

    Talk Title: Lighting the fuse to enable metamaterials for passive, adaptive flow control

    Abstract: Unsteady flow control is challenging in many engineering domains. Active techniques are costly, energy-intensive, and heavy, while passive approaches often lack robustness in handling complex flow dynamics. Metamaterials are structures with engineered architecture, allowing for catered response behaviors to stimuli. These structures offer a transformative potential for flow control by flow-metamaterial interaction, FMI. FMI could allow engineers to leverage architected structures to passively and adaptively produce desired flow responses. 
     
    To capitalize on this potential, however, we must first identify which classes of metamaterials are most promising for different flow scenarios, and understand how to align the key metamaterial behaviors with the relevant flow length- and timescales to enable favorable flow-structure interplay.  This understanding must account for the behavior of the fully coupled flow-metamaterial system, which will generally yield dynamics with distinct time/length scales from those of the constituent flow/structure systems. Obtaining this understanding requires a suite of computational tools capable of predicting and understanding the flow-structure interplay between the targeted complex flows and modern architected structures.

     
    We present some a-la-carte results on these various challenges and opportunities. We discuss some key metamaterial classes promising for certain flow behaviors. We share some ongoing development of high-fidelity and resolvent computational tools within an immersed boundary framework, currently without flow-structure interplay but being designed to enable robust, versatile computations between flows and a wide range of metamaterials. Finally, for simplified flow-metamaterial configurations, we discuss efforts to synthesize appropriate dimensionless parameters, expressed in terms of key intrinsic properties of the separate flow/structure systems, that govern the FMI system's behavior.  

     
     
    *Andres is grateful for funding from AFOSR to perform the presented work.
     

    Biography:  Andres is an Assistant Professor at UIUC. He uses computational techniques to study flow-structure interaction, particularly when the structure has some heterogeneous properties that make the coupled behavior more complex. He is interested in developing high-fidelity and analysis techniques to simulate and understand these dynamics. He also has two young children that bring fun regular surprises, and enjoys running, cycling, squash, and bouldering.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Seminar

    Wed, Oct 09, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Rahul Panat, Carnegie Mellon University

    Talk Title: Printed 3D Microelectronics: Process Development, Materials Science, and Devices Applications

    Abstract: In this research, we develop a printed microelectronics technique based on droplet-based nanoparticle printing using the Aerosol Jet (AJ) technology. A balance between inertia forces and surface forces for the microdroplets (each containing nanoparticles), along with rapid solvent evaporation are used to create highly complex 3D microarchitectures of metals and polymers without auxiliary support and with near-fully dense truss members. Highly intricate 3-D micro-lattices, pillars, interconnects, and spirals are demonstrated.   We then use these structures to: (i) study fundamental material science, and (ii) demonstrate device applications with extraordinary performance that cannot be achieved by any other method. For (i), a temperature-gradient-driven mass transport is shown as a new mechanism of 4D printing. For (ii), novel 3D geometry of electrodes enables detection of pathogen antibodies and antigens in 10-12 seconds at femtomolar sensitivities - the fastest detection of disease biomarkers yet reported! This technology is validated through human trials. In addition, the 3D microarchitectures in our lab enable fully customizable brain-computer interfaces (BCIs) that record electrical signals between neurons at densities of thousands of electrodes/cm2, which is 5-10× the current state-of-the-art BCI technologies. The technology was validated through animal testing via recording of the action potentials from the mouse brain. We also demonstrated the printing of high-capacity Li-ion batteries and thin flexible robotic skins with embedded sensors. Lastly, our ongoing work on creating manufacturing digital twins of the AJ printing process is also discussed.

    Biography: Prof. Panat is Professor. He is courtesy faculty in the Materials Science and Engineering and the Robotics Institute at CMU. He is also the Associate Director of Research at the Manufacturing Futures Institute at CMU, which is focused on bringing the latest advances in digital technologies to advanced manufacturing. Prof. Panat completed his PhD in Theoretical and Applied Mechanics from the University of Illinois at Urbana in 2004. He joined Intel Corporation’s R&D unit in Chandler, AZ, where he worked for 10 years on microprocessor materials and manufacturing R&D - specifically on 3D heterogeneous integration. At Intel, Dr. Panat led a team of engineers that developed the fabrication process for world’s first halogen-free IC chip. He was part of a team that introduced the first Si chip with a billion transistors. He returned to academia in 2014 and joined CMU in fall 2017. His research is focused on microscale 3D printing and its applications to biomedical engineering, stretchable electronics, and Li-ion batteries. He has obtained > $7.5 million in research funding from US Intelligence agencies, US Air Force, US Army, ARPA-H, National Institutes of Health (NIH), Department of Energy (DOE), National Science Foundation (NSF), and industry. Prof. Panat is recipient of several awards, including MRS gold medal, Mavis Memorial Award, an award at Intel for his work on the halogen-free chip, Struminger Teaching Fellowship, and the Russell V. Trader chair professorship at CMU.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Seminar

    Wed, Oct 16, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Ananya Balakrishna, UC Santa Barbara

    Talk Title: Phase Transformations in Multifunctional Materials

    Abstract: Phase transformation materials are characterized by their ability to rapidly and reversibly switch between distinct properties, such as insulating and conducting, paramagnetic and ferromagnetic, or Li-rich and Li-poor. These transformations, however, are accompanied by abrupt structural changes in the crystal lattices, which can nucleate defects, accumulate strain energy, and accelerate material decay. We investigate these transformations in multifunctional materials from the viewpoint of Ericksen’s multiple energy wells. By doing so, we identify important links between material constants, crystallographic microstructures, and macroscopic properties. This approach to understanding material behavior from the perspective of energy landscapes may suggest new ways to design materials with improved properties and lifespans. In this talk, I will present our findings on phase transformations in battery electrodes (intercalation compounds), photomechanical materials (molecular crystals), and soft magnetic alloys. Most of this work has primarily been conducted by Delin Zhang (PhD candidate at USC/AME) and Devesh Tiwari (MS from USC/AME).

    Biography: Ananya Renuka Balakrishna is an Assistant Professor in the Materials Department at the University of California Santa Barbara. She received her B.Tech degree in Mechanical Engineering from the National Institute of Technology Karnataka and her Ph.D. in Solid Mechanics and Materials Engineering from the University of Oxford. Before her current appointment, she was a Lindemann Postdoctoral Fellow at MIT and the University of Minnesota and joined the faculty in the Department of Aerospace & Mechanical Engineering at the University of Southern California in 2020. Her research group develops theoretical models to understand the interplay between fundamental material constants and microstructural instabilities, and how they collectively shape the physical response of a material.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Seminar

    Wed, Oct 23, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Jian Cao, Northwestern

    Talk Title: Physics-based AI-assisted Design and Control of Manufacturing Processes

    Abstract: Current research efforts at my manufacturing group aim to advance the capability to co-design materials and manufacturing processes using hybrid physics-based and data-driven approaches. In this talk, I will demonstrate our work in the development of differentiable simulation tools, sensing, and process control to achieve effective and efficient predictions and control of a material’s mechanical behavior in metal additive manufacturing processes. Furthermore, I will show how we use machine learning to accelerate the physics-based simulations and to realize active sensing with the goal of effective in-situ local process control. Our solutions particularly target three notoriously challenging aspects of the process: long history-dependent properties, complex geometric features, and the high dimensionality of their design space. The approaches are applicable to other manufacturing processes as well, such as flexible incremental forming.

    Biography: Cardiss Collins Professor Jian Cao (MIT’Ph.D, MIT’MS, SJTU’BS) specialized in innovative manufacturing processes and systems, particularly in the areas of deformation-based processes and laser additive manufacturing processes. She is the Founding Director of the research center on Manufacturing Science and Innovation at Northwestern, known as NIMSI. 
    Prof. Cao is an elected member of the National Academy of Engineering (NAE) and of the American Academy of Arts and Sciences (AAA&S). She is a Fellow of American Association for the Advancement of Science (AAAS), ASME, the International Academy for Production Engineering (CIRP) and SME. Her major awards include DoD Vannevar Bush Faculty Fellowship, ASME Ted Belytschko Applied Mechanics Award, the inaugural ASME Devor-Kapoor Manufacturing Medal, Hideo Hanafusa Outstanding Investigator Award for Flexible Automation, ASME Milton C. Shaw Manufacturing Research Medal, Charles Russ Richards Memorial Award from ASME and Pi Tau Sigma, SME Gold Medal, and SME Frederick W. Taylor Research Medal. Cao was the Editor-in-Chief of Journal of Materials Processing Technology. 
    Prof. Cao now serves as an Associate Vice President for Research at Northwestern, a member of the National Materials and Manufacturing Board of the National Academies, a member of the Defense Materials, Manufacturing and its Infrastructure (DMMI) Standing Committee of the National Academies, Board of Directors of SME, and Board of mHUB – accelerator for hardtech innovation and manufacturing in Chicago.
     

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.