Logo: University of Southern California

Events Calendar



Select a calendar:



Filter November Events by Event Type:


SUNMONTUEWEDTHUFRISAT
27
28
29
30
31
1
2

3
4
5
7
8
9

10
11
12
14
15
16

24
25
26
27
28
29
30


Conferences, Lectures, & Seminars
Events for November

  • AME Seminar

    Wed, Nov 06, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Zachary Manchester, Carnegie Mellon University

    Talk Title: Composable Optimization for Robotic Motion Planning and Control

    Abstract: Contact interactions are pervasive in key real-world robotic tasks like manipulation and walking. However, the non-smooth dynamics associated with impacts and friction remain challenging to model, and motion planning and control algorithms that can fluently and efficiently reason about contact remain elusive. In this talk, I will share recent work from my research group that takes an “optimization-first” approach to these challenges: collision detection, physics, motion planning, state estimation, and control are all posed as constrained optimization problems. We then build a set of algorithmic and numerical tools that allow us to flexibly compose these optimization sub-problems to solve complex robotics problems involving discontinuous, unplanned, and uncertain contact mechanics.

    Biography: Zac Manchester is an Assistant Professor of Robotics at Carnegie Mellon University. He holds a Ph.D. in aerospace engineering and a B.S. in applied physics from Cornell University. Zac was a postdoc in the Agile Robotics Lab at Harvard University and previously worked at Stanford, NASA Ames Research Center and Analytical Graphics, Inc. He received a NASA Early Career Faculty Award in 2018 and has led four satellite missions. His research interests include motion planning, control, and numerical optimization, particularly with application to robotic locomotion and spacecraft guidance, navigation, and control.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Seminar

    Wed, Nov 13, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Robert Kohn, New York University

    Talk Title: Mechanism-based mechanical metamaterials

    Abstract: The design and analysis of mechanism-based mechanical metamaterials is a relatively new and rapidly growing research area. It studies artificial "materials" that take advantage of "mechanisms" (that is, nontrivialenergy-free deformations) to achieve interesting macroscopic behavior.The relevant mechanics is nonlinear, since mechanisms involve large rotations. While there have been insightful studies of specific examples, some fundamental issues remain poorly understood. This talk will address two of them, namely (a) how to analyze a metamaterial's macroscopic behavior, and (b) whether linear elastic calculations can still be of use in the analysis of such systems, despite the fact that their mechanisms involve large rotations? My talk will start with a broad introduction to this area; then I'll discuss some recent work with Xuenan Li, which focuses on a particular (very rich) example -- the Kagome metamaterial. This system is interesting because it has infinitely many mechanisms, yet it behaves macroscopically as anonlinear elastic material whose stress-free states are compressive conformal maps.

    Biography: Robert V. Kohn is Professor Emeritus of Mathematics at New YorkUniversity's Courant Institute of Mathematical Sciences. He received his PhD in Mathematics from Princeton in 1979, then held a two-year NSFPostdoctoral Fellowship which took him to the Courant Institute. He joined the faculty of the Courant Institute 1981, becoming Full Professor in 1988 and Silver Professor in 2017 before choosing to retire in 2022. Much of his work has addressed problems from mechanics and physics using methods from the calculus of variations and partial differential equations. He has, in particular, studied many examples of energy-driven pattern formation, in diverse systems ranging from shape-memory materials to thin elastic sheets. Professor Kohn's recognitions include selection as a member of the American Academy of Arts and Sciences, receipt of the American Mathematical Society's 2014 Leroy P. Steele Award, and being selected as both a SIAM Fellow and a Fellow of the American Mathematical Society.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Seminar

    Wed, Nov 20, 2024 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Adrian Lew, Stanford

    Talk Title: The Art and the Science of Metal 3D Printing

    Abstract: This is the title of a class I teach at Stanford on metal 3D printing, and it reflects my perspective on where metal 3D printing is today: part art and part science, because of the complexities and multiple physical processes at play. Printing strategies are inspired in science, but when it comes time to print a new alloy or a complex geometry, the art storms in to help bridge the gaps in understanding. A goal in metal 3D printing research is to shift this balance towards science.
     
    In this talk I will first describe the main physical processes involved one of the most widely adopted metal 3D printing technologies, Laser Powder Bed Fusion (LPBF), and then showcase three vignettes of contributions we made: (a) in-situ alloying and printing of tantalum-tungsten alloys, (b) the “surprising” behavior of some martensitic steels under 3D printing conditions, (c) two ways to alter the optical absorptivity of highly-reflective metallic powders to facilitate printing of copper in some standard printers. The art and the science are interweaved in the three contributions.

    Biography: Adrian J. Lew is a  Professor of Mechanical Engineering and the Institute for Computational and Mathematical Engineering at Stanford University. He graduated with the degree of Nuclear Engineer from the Instituto Balseiro in Argentina, and received his master of science and doctoral degrees in Aeronautics from the California Institute of Technology. He is a fellow of the International Association for Computational Mechanics, and has been awarded Young Investigator Award by the International Association for Computational Mechanics, the ONR Young Investigator Award, the NSF Career Award, and the Ferdinand P. Beer & Russel Johnston, Jr., Outstanding New Mechanics Educator Award from the American Society of Engineering Education. He has also received an honorable mention by the Federal Communication Commission for the creation of the Virtual Braille Keyboard. He was the first USACM Technical Thrust Area Lead for Manufacturing, and still serves it as a member. He is currently member of the Technical Advisory Board for Velo 3D, a metal 3D printing start-up located in Campbell, CA, and consultant to other metal 3D printing companies.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Location: Seaver Science Library (SSL) - 202

    WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Special Seminar

    Thu, Nov 21, 2024 @ 10:00 AM - 11:30 AM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Karen Mulleners, EPFL

    Talk Title: Shaping up to Explore and Exploit Unsteady Fluid-structure Interactions

    Abstract: Nature is full of thin, flexible objects that bend, flutter, or flap in the wind or the water such as leaves of trees and bushes, insect wings, and fish fins. A remarkable feature that is common to these objects is their ability to deform when interacting with the air or the water in a way that benefits them. Leaves of trees bend in the wind to reduce their resistance and the loads on their stems. The flexibility of insect wings and fish fins can reduce the effort the animals need to stay aloft or to propel themselves and increases their performance and agility. Leaves, insect wings, and fish fins come in a myriad of different shapes and sizes. Surprisingly, the influence of the shape of thin flexible objects on their fluid structure interactions has not yet received much attention. In our lab, we design unsteady fluid-structure interaction experiments to close that gap and fundamentally study how the shape of flexible structures and their ability to reconfigure changes their fluid dynamic performance and resilience in dynamic fluid environments. I will present recent work including experimental investigations of the fluid-structure interactions of deformable flapping wings, reconfiguring disks, and flapping flags.

    Biography: Karen Mulleners is an associate professor in the institute of mechanical engineering in the school of engineering at EPFL. She is the head of the unsteady flow diagnostics laboratory (UNFoLD). She is an experimental fluid dynamicist who focuses on unfolding the origin and development of unsteady flow separation and vortex formation. Karen studied physics in Belgium (Hasselt University, previously Limburgs Universitair Centrum) and the Netherlands (TU Eindhoven). She received her PhD in mechanical engineering from the Leibniz Universität Hannover in Germany in 2010 for her work on dynamic stall on pitching airfoils that she conducted as a member of the German aerospace centre (DLR) in Göttingen. Before joining EPFL in 2016, Karen was a (non-tenure track) assistant professor at the Leibniz Universität Hannover in Germany.

    Host: AME Department

    Location: Olin Hall of Engineering (OHE) - 406

    Audiences: Everyone Is Invited

    Contact: Tessa Yao


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • AME Special Seminar

    Fri, Nov 22, 2024 @ 10:00 AM - 11:30 AM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Serhiy Yarusevych, University of Waterloo, Canada

    Talk Title: Lifting Surfaces at Aerodynamically low Reynolds numbers: Recent Advances

    Abstract: Flow development over lifting surfaces in aerodynamically low Reynolds number flows (Re<500,000) is largely governed by boundary layer separation and subsequent separated sear layer development on the suction side. In the time-averaged sense, rapid laminar-to-turbulent transition in the separated shear layer leads to the formation of a closed recirculating flow region referred to as the Laminar Separation Bubble (LSB). However, LSBs feature rich dynamics associated with the formation and evolution of shear layer roll up vortices leading to laminar-to-turbulent transition. Linear stability analysis confirms that there is a continuous stability spectrum spanning laminar boundary later and separated shear layer regions, linking LSB transition and shear layer vortex shedding to upstream amplification of disturbances that originate from free-stream perturbations in the receptivity region. Flow development in the aft portion of the bubble is highly three-dimensional even on nominally two-dimensional geometries. It manifests in progressive deformation of shear layer vortices and subsequent vortex breakdown. On a finite wing, an open LSB forms due to wing tip and root effects. Away from the affected regions, however, LSB topology and dynamics appear to be quasi two-dimensional despite effective angle of attack variation across the span. Changes in operating conditions, including velocity and angle of attack, can lead to significant transient flow developments associated with bubble bursting (i.e., sudden lengthening or full separation without subsequent reattachment) and LSB re-formation, accompanied by substantial changes in aerodynamic loads.

    Biography: Dr. Serhiy Yarusevych is a full professor in the Department of Mechanical and Mechatronics Engineering at the University of Waterloo, Canada. He is directing the Fluid Mechanics Research Laboratory focused on multidisciplinary applications of fluid mechanics in engineering and science, including operation of lifting surfaces at low Reynolds numbers, flows over bluff bodies, free shear flows, flow induced vibrations and noise, and flow control. The associated research involves a combination of experimental, analytical, and numerical tools, with the main emphasis placed on experiments involving particle image velocimetry. His research in Canada was interposed by sabbatical leaves at TU Delft and the University of Bundeswehr Munich, in 2013-2014 and 2019-2020, respectively, involving collaborative research with advanced flow diagnostic tools and volumetric measurements. Dr. Yarusevych is an Alexander von Humboldt Fellow, Mercator Fellow, and Associate Fellow of AIAA. Since 2018, Dr. Yarusevych has been serving as an Editor-in-Chief of Experimental Thermal and Fluid Science, Elsevier.

    Host: AME Department

    Location: Olin Hall of Engineering (OHE) - 406

    Audiences: Everyone Is Invited

    Contact: Tessa Yao


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.