Select a calendar:
Filter April Events by Event Type:
Events for April 13, 2023
-
CS Colloquium: Ibrahim Sabek (MIT) - Building Better Data-Intensive Systems Using Machine Learning
Thu, Apr 13, 2023 @ 11:00 AM - 12:00 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Ibrahim Sabek, MIT
Talk Title: Building Better Data-Intensive Systems Using Machine Learning
Series: CS Colloquium
Abstract: Database systems have traditionally relied on handcrafted approaches and rules to store large-scale data and process user queries over them. These well-tuned approaches and rules work well for the general-purpose case, but are seldom optimal for any actual application because they are not tailored for the specific application properties (e.g., user workload patterns). One possible solution is to build a specialized system from scratch, tailored for each use case. Although such a specialized system is able to get orders-of-magnitude better performance, building it is time-consuming and requires a huge manual effort. This pushes the need for automated solutions that abstract system-building complexities while getting as close as possible to the performance of specialized systems. In this talk, I will show how we leverage machine learning to instance-optimize the performance of query scheduling and execution operations in database systems. In particular, I will show how deep reinforcement learning can fully replace a traditional query scheduler. I will also show that-”in certain situations-”even simpler learned models, such as piece-wise linear models approximating the cumulative distribution function (CDF) of data, can help improve the performance of fundamental data structures and execution operations, such as hash tables and in-memory join algorithms.
This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Ibrahim Sabek is a postdoc at MIT and an NSF/CRA Computing Innovation Fellow. He is interested in building the next generation of machine learning-empowered data management, processing, and analysis systems. Before MIT, he received his Ph.D. from University of Minnesota, Twin Cities, where he studied machine learning techniques for spatial data management and analysis. His Ph.D. work received the University-wide Best Doctoral Dissertation Honorable Mention from University of Minnesota in 2021. He was also awarded the first place in the graduate student research competition (SRC) in ACM SIGSPATIAL 2019 and the best paper runner-up in ACM SIGSPATIAL 2018.
Host: Cyrus Shahabi
Location: Olin Hall of Engineering (OHE) - 132
Audiences: Everyone Is Invited
Contact: Assistant to CS chair
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor. -
CS Colloquium: Michael Oberst (MIT) - Rigorously Tested & Reliable Machine Learning for Health
Thu, Apr 13, 2023 @ 04:00 PM - 05:00 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Michael Oberst, MIT
Talk Title: Rigorously Tested & Reliable Machine Learning for Health
Series: CS Colloquium
Abstract: How do we make machine learning as rigorously tested and reliable as any medication or diagnostic test?
Machine learning (ML) has the potential to improve decision-making in healthcare, from predicting treatment effectiveness to diagnosing disease. However, standard retrospective evaluations can give a misleading sense for how well models will perform in practice. Evaluation of ML-derived treatment policies can be biased when using observational data, and predictive models that perform well in one hospital may perform poorly in another.
In this talk, I will introduce methods I have developed to proactively assess and improve the reliability of machine learning models. A central theme will be the application of external knowledge, including guided review of patient records, incorporation of limited clinical trial data, and interpretable stress tests. Throughout, I will discuss how evaluation can directly inform model design.
This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Michael Oberst is a final-year PhD candidate in Computer Science at MIT. His research focuses on making sure that machine learning in healthcare is safe and effective, using tools from causal inference and statistics. His work has been published at a range of machine learning venues (NeurIPS / ICML / AISTATS / KDD), including work with clinical collaborators from Mass General Brigham, NYU Langone, and Beth Israel Deaconess Medical Center. He has also worked on clinical applications of machine learning, including work on learning effective antibiotic treatment policies (published in Science Translational Medicine). He earned his undergraduate degree in Statistics at Harvard.
Host: Yan Liu
Location: Ronald Tutor Hall of Engineering (RTH) - 526
Audiences: Everyone Is Invited
Contact: Assistant to CS chair
This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.