Logo: University of Southern California

Events Calendar



Select a calendar:



Filter September Events by Event Type:



University Calendar
Events for September

  • USC Alumni Leadership Conference

    Fri, Sep 06, 2019 @ 08:00 AM - 05:00 PM

    Viterbi School of Engineering Alumni

    University Calendar


    Each year, the USC Alumni Leadership Conference brings together volunteer leaders from across the university and around the world, including representatives from the USC Alumni Association Board of Governors, the Council for Opportunity and Regional Engagement, USC School and Athletics boards, multi-cultural alumni associations, industry and affinity networks, regional alumni groups, and alumnae groups.

    Check https://alumni.usc.edu/alc/ for more information.

    Follow #USCALC on Facebook, Instagram and Twitter.

    More Information: col_aa_ALC-invitation_web-graphic-only.png

    Audiences: Everyone Is Invited

    Posted By: Tiffany Tay

    OutlookiCal
  • Thesis Proposal - Ryan Julian

    Thu, Sep 19, 2019 @ 12:00 PM - 01:00 PM

    Computer Science

    University Calendar


    Title: The Adaptation Base Case: Understanding the Challenge of Continual Robot Learning
    Date/Time: Thursday, September 19th 12pm
    Location: RTH 406
    Candidate: Ryan Julian
    Committee: Prof. Gaurav Sukhatme (adviser), Prof. Joseph Lim, Prof. Heather Culbertson, Prof. Stefanos Nikolaidis, Prof. SK Gupta, Dr. Karol Hausman

    Abstract:
    Much of the promise of reinforcement learning (RL) for robotics is predicated on the idea of hands-off continual improvement: that these systems will be able to use machine learning to improve their performance after deployment. Without this property, RL does not compare very favorably to hand-engineered robotics. The research community has successfully shown that RL can train agents which are at least as good, or better than, hand-engineered controllers after a single large-scale up-front training process. Furthermore, multi-task and meta-learning has research shown that we can learn controllers which adapt to new tasks, by reusing data and models from related tasks. What is not well-understood is whether we can make this adaptation process continual. The overall schematic off-policy multi-task RL algorithms suggests these might make good continual learners, but we don't if know that's actually the case. In this presentation, I'll review the recent history of adaptive robot learning research, and enumerate the most important unanswered questions which prevent us from designing continual multi-task learners. I'll then outline a research agenda which will answer those questions, to provide a road map to continual multi-task learning for robotics.

    Location: 406

    Audiences: Everyone Is Invited

    Posted By: Lizsl De Leon

    OutlookiCal