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Abstract. In this paper, we consider the problem of estimating a poten-
tially sensitive (individually stigmatizing) statistic on a population. In
our model, individuals are concerned about their privacy, and experience
some cost as a function of their privacy loss. Nevertheless, they would
be willing to participate in the survey if they were compensated for their
privacy cost. These cost functions are not publicly known, however, nor
do we make Bayesian assumptions about their form or distribution. In-
dividuals are rational and will misreport their costs for privacy if doing
so is in their best interest. Ghosh and Roth recently showed in this set-
ting, when costs for privacy loss may be correlated with private types,
if individuals value differential privacy, no individually rational direct
revelation mechanism can compute any non-trivial estimate of the pop-
ulation statistic. In this paper, we circumvent this impossibility result
by proposing a modified notion of how individuals experience cost as a
function of their privacy loss, and by giving a mechanism which does not
operate by direct revelation. Instead, our mechanism has the ability to
randomly approach individuals from a population and offer them a take-
it-or-leave-it offer. This is intended to model the abilities of a surveyor
who may stand on a street corner and approach passers-by.

1 Introduction

Voluntarily provided data is a cornerstone of medical studies, opinion polls,
human subjects research, and marketing studies. Suppose you are a researcher
and you would like to collect data from a population and perform an analysis
on it. Presumably, you would like your sample, or at least your analysis, to be
representative of the underlying population. Unfortunately, individuals’ decisions
of whether to participate in your study may skew your data: perhaps people with
an embarrassing medical condition are less likely to respond to a survey whose
results might reveal their condition. Some data collectors, such as the US Census,
can get around the issue of voluntary participation by legal mandate, but this is
rare. How might we still get analyses that represent the underlying population?

Statisticians and econometricians have of course attempted to address selec-
tion and non-response bias issues. One approach is to assume that the effect of
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unobserved variables has mean zero. The Nobel-prize-winning Heckman correc-
tion method [1] and the related literature instead attempt to correct for non-
random samples by formulating a theory for the probabilities of the unobserved
variables and using the theorized distribution to extrapolate a corrected sample.
The limitations of these approaches is precisely in the assumptions they make on
the structure of the data. Is it possible to address these issues without needing
to “correct” the observed sample, while simultaneously minimizing the cost of
running the survey?

One could try to incentivize participation by offering a reward for partici-
pation, but this only serves to skew the survey in favor of those who value the
reward over the costs of participating (e.g., hassle, time, detrimental effects of
what the study might reveal), which again may not result in a representative
sample. Ideally, you would like to be able to find out exactly how much you would
have to pay each individual to participate in your survey (her “value”, akin to
a reservation price), and offer her exactly that much. Unfortunately, traditional
mechanisms for eliciting player values truthfully are not a good match for this
setting because a player’s value may be correlated with her private information
(for example, individuals with an embarrassing medical condition might want to
be paid extra in order to reveal it). Standard mechanisms based on the revelation
principle are therefore no longer truthful. In fact, Ghosh and Roth [2] showed
that when participation costs can be arbitrarily correlated with private data,
no direct revelation mechanism can simultaneously offer non-trivial accuracy
guarantees and be individually rational for agents who value their privacy.

The present paper tackles this problem of conducting a survey on sensitive
information when the costs of participating might be correlated with the in-
formation itself. In order to allow us to focus on the problem of incentivizing
participation, we set aside the problem of truthfulness, and assume that once
someone has decided to voluntarily participate in our survey, she must respond
truthfully. This can most simply be justified by assuming that survey responses
are verifiable or cannot easily be fabricated (e.g., the surveyor requires docu-
mentation of answers, or, more invasively, actually collects a blood sample from
the participant). While the approach we present in this paper works well with
such verifiable responses, in addition, our framework provides a formal “almost-
truthfulness” guarantee, that the expected utility a participant could gain by
lying in the survey is at most very small.

Motivated by the negative result of Ghosh and Roth [2], we move away from
direct revelation mechanisms, to a framework where the surveyor is allowed to
make “take-it-or-leave-it” offers to randomly sampled members of the underlying
population. The simplest “take-it-or-leave-it” mechanism one might construct is
simply to offer all sampled individuals the same low price in return for their par-
ticipation in the survey (where participation might come with, e.g., a guarantee
of differential privacy on their private data). If it turns out that this price is
not high enough to induce sufficient rates of participation, one would double the
price and restart the mechanism with a fresh sample of individuals, repeating
until a target participation rate is reached (or the survey budget is exhausted).
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The statistics released from the survey would then be based (perhaps in a dif-
ferentially private manner) on the private information of the participants at the
final (highest) price.

One might hope that such a simple doubling scheme would suffice to get “rea-
sonable” participation rates at “reasonably” low cost. In order to deduce when
take-it-or-leave-it offers will be accepted, though, we need a concrete model for
how individuals value their privacy. Ghosh and Roth [2] provide such a model—
essentially, they interpret the differential privacy parameter as the parameter
governing individuals’ costs. However, as we argue, this model can be problem-
atic.

Our Results Our first contribution is to document the “paradox of differen-
tial privacy”—in Section 2, we observe that the manner in which Ghosh and
Roth propose to model privacy costs results in clearly nonsensical behavioral
predictions, even in a quite simple take-it-or-leave-it setting. In Section 5, we
offer an alternative model for the value of privacy in multi-stage protocols, using
the tools and language of differential privacy. We then, in Section 6, present a
privacy-preserving variant of the simple “double your offer” algorithm above,
and examine its ability to incentivize participation in data analyses when the
subjects’ value for their private information may be correlated with the sensitive
information itself. We show that our simple mechanism allows us to compute
accurate statistical estimates, addressing the survey problem described above,
and we present an analysis of the costs of running the mechanism relative to a
fixed-price benchmark.

2 The Paradox of Differential Privacy

Over the past decade, differential privacy has emerged as a compelling privacy
definition, and has received considerable attention. While we provide formal
definitions in Section 4, differential privacy essentially bounds the sensitivity
of an algorithm’s output to arbitrary changes in individual’s data. In particu-
lar, it requires that the probability of any possible outcome of a computation
be insensitive to the addition or removal of one person’s data from the input.
Among differential privacy’s many strengths are (1) that differentially private
computations are approximately truthful [3] (which gives the almost-truthfulness
guarantee mentioned above), and (2) that differential privacy is a property of
the mechanism and is independent of the input to the mechanism.

A natural approach taken by past work (e.g., [2]) in attempting to model
the cost incurred by participants in a computation on their private data is to
model individuals as experiencing cost as a function of the differential privacy
parameter ε associated with the mechanism using their data. We argue here,
however, that modeling an individual’s cost for privacy loss solely as any function
f(ε) of the privacy parameter ε predicts unnatural agent behavior and incentives.

Consider an individual who is approached and offered a deal: she can partici-
pate in a survey in exchange for $100, or she can decline to participate and walk
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away. She is given the guarantee that both her participation decision and her in-
put to the survey (if she opts to participate) will be treated in an ε-differentially
private manner. In the usual language of differential privacy, what does this
mean? Formally, her input to the mechanism will be the tuple containing her
participation decision and her private type. If she decides not to participate, the
mechanism output is not allowed to depend on her private type, and switching
her participation decision to “yes” cannot change the probability of any outcome
by more than a small multiplicative factor. Similarly, fixing her participation de-
cision as “yes”, any change in her stated type can only change the probability
of any outcome by a small multiplicative factor.

How should she respond to this offer? A natural conjecture is that she would
experience a higher privacy cost for participating in the survey than not (after
all, if she does not participate, her private type has no effect on the output of the
mechanism – she need not even have provided it), and that she should weigh that
privacy cost against the payment offered, and make her decision accordingly.

However, if her privacy cost is solely some function f(ε) of the privacy param-
eter of the mechanism, she is actually incentivized to behave quite differently.
Since the privacy parameter ε is independent of her input, her cost f(ε) will be
identical whether she participates or not. Indeed, her participation decision does
not affect her privacy cost, and only affects whether she receives payment or not,
and so she will always opt to participate in exchange for any positive payment.

We view this as problematic and as not modeling the true decision-making
process of individuals: real people are unlikely to accept arbitrarily low offers for
their private data. One potential route to addressing this “paradox” would be
to move away from modeling the value of privacy solely in terms of an input-
independent privacy guarantee. This is the approach taken by [4]. Instead, we
retain the framework of differential privacy, but introduce a new model for how
individuals reason about the cost of privacy loss. Roughly, we model individuals’
costs as a function of the differential privacy parameter only of the portion of
the mechanism they participate in, and assume they do not experience cost from
the parts of the mechanism that process data that they have not provided (or
that have no dependence on their data).

3 Related Work

In recent years, differential privacy [5] has emerged as the standard solution
concept for privacy in the theoretical computer science literature. There is by
now a very large literature on this fascinating topic, which we do not attempt
to survey here, instead referring the interested reader to a survey by Dwork [6].

McSherry and Talwar [3] propose that differential privacy could itself be used
as a solution concept in mechanism design (an approach later used by Gupta
et al. [7] and others). They observe that any differentially private mechanism is
approximately truthful, while simultaneously having some resilience to collusion.
Using differential privacy as a solution concept (as opposed to dominant strategy
truthfulness) they give improved results in a variety of auction settings.
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This literature was extended by a series of elegant papers by Nissim, Smorodin-
sky, and Tennenholtz [8], Xiao [9], Nissim, Orlandi, and Smorodinsky [10], and
Chen et al. [4]. This line of work observes ([8, 9]) that differential privacy does
not lead to exactly truthful mechanisms, and indeed that manipulations might
be easy to find, and then seeks to design mechanisms that are exactly truth-
ful even when agents explicitly value privacy ([9, 10, 4]). Recently, Huang and
Kannan show that the mechanism used by McSherry and Talwar is maximal in
range, and so can be made exactly truthful through the use of payments [11].

Feigenbaum, Jaggard, and Schapira consider (using a different notion of pri-
vacy) how the implementation of an auction can affect how many bits of infor-
mation are leaked about individuals’ bids [12].

Most related to this paper is an orthogonal direction initiated by Ghosh and
Roth [2], who consider the problem of a data analyst who wishes to buy data
from a population for the purposes of computing an accurate estimate of some
population statistic. Individuals experience cost as a function of their privacy
loss (as measured by differential privacy), and must be incentivized by a truthful
mechanism to report their true costs. In particular, [2] show that if individuals
experience disutility as a function of differential privacy, and if costs for privacy
can be arbitrarily correlated with private types, then no individually rational
direct revelation mechanism can achieve any nontrivial accuracy. Fleischer and
Lyu [13] overcome this impossibility result by moving to a Bayesian setting,
in which costs are drawn from known prior distributions which depend on the
individual’s private data, and by proposing a relaxation of how individuals ex-
perience privacy cost. In this paper, we also overcome this impossibility result,
but by an abandoning the direct revelation model in favor of a model in which a
surveyor can approach random individuals from the population and offer them
take-it-or-leave-it offers, and by introducing a slightly different model for how
individuals experience cost as a function of privacy. In contrast to [13], our re-
sults allow for worst-case correlations between private data and costs for privacy,
and do not require any Bayesian assumptions. Also in this line of work, Roth
and Schoenebeck [14] consider the problem of deriving Bayesian optimal survey
mechanisms for computing minimum variance unbiased estimators of a popu-
lation statistic from individuals who have costs for participating in the survey.
Although the motivation of this work is similar, the results are orthogonal. In
the present paper, we take a prior-free approach and model costs for private
access to data using the formalism of differential privacy. In contrast, [14] takes
a Bayesian approach, assuming a known prior over agent costs, and does not
attempt to provide any privacy guarantee, and instead only seeks to pay indi-
viduals for their participation.

4 Preliminaries

We model databases as an ordered multiset of elements from some universe X:
D ∈ X∗ in which each element corresponds to the data of a different individ-
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ual. We call two databases neighbors if they differ in the data of only a single
individual.

Definition 1. Two databases of size n D,D′ ∈ Xn are neighbors with respect
to individual i if for all j 6= i ∈ [n], Dj = D′j.

We can now define differential privacy. Intuitively, differential privacy promises
that the output of a mechanism does not depend too much on any single indi-
vidual’s data.

Definition 2 ([5]). A randomized algorithm A which takes as input a database
D ∈ X∗ and outputs an element of some arbitrary range R is εi-differentially
private with respect to individual i if for all databases D,D′ ∈ X∗ that are
neighbors with respect to individual i, and for all subsets of the range S ⊆ R, we
have:

Pr[A(D) ∈ S] ≤ exp(εi)Pr[A(D′) ∈ S]

A is εi-minimally differentially private with respect to individual i if εi = inf(ε ≥
0) such that A is ε-differentially private with respect to individual i. When it
is clear from context, we will simply write εi-differentially private to mean εi-
minimally differentially private.

A simple and useful fact is that post-processing does not affect differential
privacy guarantees.

Fact 41 Let A : X∗ → R be a randomized algorithm which is εi-differentially
private with respect to individual i, and let f : R → T be an arbitrary (possibly
randomized) function mapping the range of A to some abstract range T . Then the
composition g ◦ f : X∗ → T is εi-differentially private with respect to individual
i.

A useful distribution is the Laplace distribution.

Definition 3 (The Laplace Distribution). The Laplace Distribution with
mean 0 and scale b is the distribution with probability density function: Lap(x|b) =
1
2b exp(− |x|b ). We will sometimes write Lap(b) to denote the Laplace distribution
with scale b, and will sometimes abuse notation and write Lap(b) simply to denote
a random variable X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries
with Laplace noise preserves ε-differential privacy.

Theorem 1 ([5]). Suppose f : X∗ → Rk is a function such that for all adjacent
databases D and D′, ||f(D)− f(D′)||1 ≤ 1. Then the procedure which on input
D releases f(D) + (X1, . . . , Xk), where each Xi is an independent draw from a
Lap(1/ε) distribution, preserves ε-differential privacy.

We consider a (possibly infinite) collection of individuals drawn from some
distribution over types D. There exists a finite collection of private types T . Each
individual is described by a private type ti ∈ T , as well as a nondecreasing cost
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function ci : R+ → R+ that measures her disutility ci(εi) for having her private
type used in a computation with a guarantee of εi-differential privacy.

Agents interact with the mechanism as follows. The mechanism will be en-
dowed with the ability to select an individual i uniformly at random (without
replacement) from D, by making a call to a population oracle OD. Once an indi-
vidual i has been sampled, the mechanism can present i with a take-it-or-leave-it
offer, which is a tuple (pi, ε1i , ε

2
i ) ∈ R3

+. pi represents an offered payment, and ε1i
and ε2i represent two privacy parameters. The agent then makes her participa-
tion decision, which consists of one of two actions: she can accept the offer, or she
can reject the offer. If she accepts the offer, she communicates her (verifiable)
private type ti to the auctioneer, who may use it in a computation which is ε2i -
differentially private with respect to agent i. In exchange she receives payment
pi. If she rejects the offer, she need not communicate her type, and receives no
payment. Moreover, the mechanism guarantees that the bit representing whether
or not agent i accepts the offer is used only in an ε1i -differentially private way,
regardless of her participation decision.

5 An Alternate Model of Privacy Costs

We model agents as caring only about the privacy of their private type ti, but
because of possible correlations between costs and types they may also experience
a cost when information about their cost function ci(εi) is revealed. To capture
this while avoiding Bayesian assumptions, we take the following approach.

Implicitly, there is a (possibly randomized) process fi which maps a user’s
private type t to her cost function ci, but we make no assumption about the
form of this map. This takes a worst case view—i.e., we have no prior over
individuals’ cost functions. For a point of reference, in a Bayesian model, the
function fi would represent user i’s marginal distribution over costs conditioned
on her type.

When individual i is faced with a take-it-or-leave-it offer, her type may affect
two computations: first, her participation decision (which may be a function of
her type) is used in some computation A1 which will be ε1i -differentially pri-
vate. Then, if she accepts the offer, she allows her type to be used in some
ε2i -differentially private computation, A2.

We model individuals as caring about the privacy of their cost function only
insofar as it reveals information about their private type. Because their cost
function is determined as a function of their private type, if P is some predicate
over cost functions, if P (ci) = P (fi(ti)) is used in a way that guarantees εi-
differential privacy, then the agent experiences a privacy loss of some ε′i ≤ εi
(which corresponds to a disutility of some ci(ε′i) ≤ ci(εi)). We write gi(εi) = ε′i
to denote this correspondence between a given privacy level and the effective
privacy loss due to use of the cost function at that level of privacy. For example,
if fi is a deterministic injective mapping, then fi(ti) is as disclosive as ti and so
gi(εi) = εi. On the other hand, if fi produces a distribution independent of the
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user’s type, then gi(εi) = 0 for all εi. Note that by assumption, 0 ≤ gi(εi) ≤ εi
for all εi and gi.

5.1 Cost Experienced from a Take-It-Or-Leave-It Mechanism

Definition 4. A Private Take-It-Or-Leave-It Mechanism is composed of two
algorithms, A1 and A2. A1 makes offer (pi, ε1i , ε

2
i ) to individual i and receives a

binary participation decision. If player i participates, she receives a payment of
pi in exchange for her private type ti. A1 performs no computation on ti. The
privacy parameter ε1i for A1 is computed by viewing the input to A1 to be the
vector of participation decisions, and the output to be the number of individuals
to whom offers were made, the offers (pi, ε1i , ε

2
i ), and an ε1i -differentially private

count of the number of players who chose to participate at the highest price we
offer.

Following the termination of A1, a separate algorithm A2 computes on the
reported private types of these participating individuals and outputs a real number
ŝ. The privacy parameter ε2i of A2 is computed by viewing the input to be the
private types of the participating agents, and the output as ŝ.

We assume that agents have quasilinear utility (cost) functions: given a pay-
ment pi, an agent i who declines a take-it-or-leave-it offer (and thus receives no
payment) and whose participation decision is used in an ε1i -differentially private
way experiences utility ui = −ci(gi(ε1i )) ≥ −ci(ε1i ). An agent who accepts a take-
it-or-leave-it offer and receives payment p, whose participation decision is used
in an ε1i -differentially private way, and whose private type is subsequently used
in an ε2i -differentially private way experiences utility ui = pi − ci(ε2i + gi(ε1i )) ≥
pi − ci(ε2i + ε1i ), by a composition property of differential privacy.

Remark 1. This model captures the correct cost model in a number of situations.
Suppose, for example, that costs have correlation 1 with types, and ci(ε) =∞ if
and only if ti = 1, otherwise ci(ε)� pi. Then, asking whether an agent wishes to
accept an offer (pi, εi, εi) is equivalent to asking whether ti = 1 or not, and those
accepting the offer are in effect answering this question twice. In this case, we
have gi(ε) = ε. On the other hand, if types and costs are completely uncorrelated,
then there is no privacy loss associated with responding to a take-it-or-leave-it
offer. This is captured by setting gi(ε) = 0.

Agents wish to maximize their utility, and so the following lemma is imme-
diate:

Lemma 1. A utility-maximizing agent i will accept a take-it-or-leave-it offer
(pi, ε1i , ε

2
i ) when pi ≥ ci(ε1i + ε2i )

Proof. We simply compare the lower bound on an agent’s utility when accepting
an offer with an upper bound on an agent’s utility when rejecting an offer to
find that agent i will always accept when

pi − ci(ε1i + ε2i ) ≥ 0.
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Remark 2. Note that this lemma is tight exactly when agent types are uncor-
related with agent costs, i.e., when gi(ε) = 0. When agent types are highly
correlated with costs, then rejecting an offer becomes more costly, and agents
may accept take-it-or-leave-it offers at lower prices.

We make no claims about how agents respond to offers (pi, ε1i , ε
2
i ) for which

pi < ci(ε1i + ε2i ). Note that since agents can suffer negative utility even by
rejecting offers, it is possible that they will accept offers that lead to experiencing
negative utility. Thus, in our setting, take-it-or-leave-it offers do not necessarily
result in participation decisions that truthfully reflect costs in the standard sense.
Nevertheless, Lemma 1 will provide a strong enough guarantee for us of one-
sided truthfulness: we can guarantee that rational agents will accept all offers
that guarantee them non-negative utility.

Note that our mechanisms will satisfy only a relaxed notion of individual
rationality : we have not endowed agents with the ability to avoid having been
given a take-it-or-leave it offer, even if both options (taking or rejecting) would
leave her with negative utility. Agents who reject take-it-or-leave-it offers can
experience negative utility in our mechanism because their rejection decision
is observed and used in a computation; we limit this negative utility and the
corresponding deviation from individual rationality by treating their rejection
decision in a differentially private manner. Once the take-it-or-leave-it offer has
been presented, agents are free to behave selfishly. We feel that both of these
relaxations (of truthfulness and individual rationality) are well motivated by real
world mechanisms in which surveyors may approach individuals in public, and
crucially, they are necessary in overcoming the impossibility result in [2].

Most of our analysis holds for arbitrary cost functions ci, but we do a bench-
mark cost comparison assuming linear utility functions of the form ci(ε) = viε,
for some quantity vi.

5.2 Accuracy

Our mechanism is designed to be used by a data analyst who wishes to compute
some statistic about the private type distribution of the population. Specifically,
the analyst gives the mechanism some function Q : T → [0, 1], and wishes to
compute a = Eti∼D[Q(ti)], the average value that Q takes among the population
of agents D. The analyst wishes to obtain an accurate answer, defined as follows:

Definition 5. A randomized algorithm, given as input access to a population
oracle OD which outputs an estimate M(OD) = â of a statistic a = Eti∼D[Q(ti)]
is α-accurate if:

Pr[|â− a| > α] <
1
3

where the probability is taken over the internal randomness of the algorithm and
the randomness of the population oracle.

The constant 1
3 is arbitrary, and is fixed only for convenience. It can be replaced

with any other constant value without qualitatively affecting our results.
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5.3 Cost

We will evaluate the cost incurred by our mechanism using a bi-criteria bench-
mark: For a parametrization of our mechanism which gives accuracy α, we will
compare our mechanism’s cost to a benchmark algorithm that has perfect knowl-
edge of each individual’s cost function, but is constrained to make every indi-
vidual the same take-it-or-leave-it offer (the same fixed price is offered to each
person in exchange for some fixed ε′-differentially private computation on her
private type) while obtaining α/32 accuracy.3 That is, the benchmark mecha-
nism must be “envy-free”, and may obtain better accuracy than we do, but only
by a constant factor. On the other hand, the benchmark mechanism has several
advantages: it has full knowledge of each player’s cost, and need not be con-
cerned about sample error. For simplicity, we will state our benchmark results
in terms of individuals with linear cost functions.

6 Mechanism and Analysis

Due to space constraints, proofs can be found in the full version.

6.1 The Take-It-Or-Leave-It Mechanism

In this section we describe our mechanism. It is not a direct revelation mecha-
nism, and instead is based on the ability to present take-it-or-leave-it offers to
uniformly randomly selected individuals from some population. This is intended
to model the scenario in which a surveyor is able to stand in a public location
and ask questions or present offers to passers by (who are assumed to arrive
randomly). Those passing the surveyor have the freedom to accept or reject the
offer, but they cannot avoid having heard it.

Our mechanism consists of two algorithms. Algorithm 1, the Harassment
Mechanism, is run on samples from the population with privacy guarantee ε0,
until it terminates at some final epoch ĵ; and then Algorithm 2, the Estimation
Mechanism, is run on (AcceptedSetbj ,EpochSize(ĵ), ε0). The Harassment Mech-
anism operates in epochs, wherin a large number of individuals are each offered
the same price. The price we offer increases by a multiplicative (1 + η) in each
epoch, for some fixed η . If a differentially private count of the number of players
accepting the offer in a given epoch is high enough, we call this the final epoch,
and hand the participating individuals over to the Estimation Mechanism. The
Estimation Mechanism then computes a differentially private (noisy) version of
the desired statistic over this set of individuals who chose to participate at the
highest price.

6.2 Privacy

Note that our mechanism offers the same ε0 in every take-it-or-leave-it offer.
3 Note that we have made no attempt to optimize the constant.
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Algorithm 1 Algorithm A1, the “Harassment Mechanism”. It is parametrized
by an accuracy level α, and we view its input to be the participation decision
of each individual approached with a take-it-or-leave-it offer, and its observable
output to be the number of individuals approached, the payments offered, and
the noisy count of the number of players who accepted the offer in the final
epoch.

Let EpochSize(j)← 100(log j+1)

α2 .
Let j ← 1.
Let ε0 = α
while TRUE do

Let AcceptedSetj ← ∅ and NumberAcceptedj ← 0 and Epochj ← ∅
for i = 1 to EpochSize(j) do

Sample a new individual xi from D.
Let Epochj ← Epochj ∪ {xi}.
Offer xi the take-it-or-leave it offer (pj , ε0, ε0) with pj = (1 + η)j

if i accepts then
Let AcceptedSetj ← AcceptedSetj ∪ {xi} and

NumberAcceptedj ← NumberAcceptedj + 1.
Let νj ∼ Lap(1/ε0) and NoisyCountj = NumberAcceptedj + νj
if NoisyCountj ≥ (1− α/8)EpochSize(j) then

Call Estimate(AcceptedSetj ,EpochSize(j), ε0).
else

Let j ← j + 1

Algorithm 2 The Estimation Mechanism. We view its inputs to be the private
types of each participating individual from the final epoch, and its output is a
single numeric estimate.
Estimate(AcceptedSet,EpochSize, ε):

Let ba =
P
xi∈AcceptedSetQ(xi) + Lap(1/ε)

Output ba/EpochSize.
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Theorem 2. The Harassment Mechanism is ε0-differentially private with re-
spect to the participation decision of each individual approached.

Theorem 3. The Estimation Mechanism is ε0-differentially private with respect
to the participation decision and private type of each individual approached.

Note that these two theorems, together with Lemma 1, imply that each agent
will accept her take-it-or-leave-it offer of (pj , ε0, ε0) whenever pj ≥ ci(2ε0).

6.3 Accuracy

Theorem 4. Our overall mechanism, which first runs the Harassment Mecha-
nism and then hands the types of the accepting players from the final epoch to
the Estimation Mechanism, is α-accurate.

6.4 Benchmark Comparison

In this section we compare the cost of our mechanism to the cost of an om-
niscient mechanism that is constrained to make envy-free offers and achieve
Θ(α)-accuracy. For the purposes of the cost comparison, in this section we as-
sume that the individuals our algorithm approaches have linear cost functions:
ci(ε) = viε for some vi ∈ R+.

Let v(α) be the smallest value v such that Prxi∼D[vi ≤ v] ≥ 1 − α. In
other words, (v(α) · 2ε, ε, ε) is the cheapest take-it-or-leave-it offer for ε-units of
privacy that in the underlying population distribution would be accepted with
probability at least 1− α, It follows that:

Lemma 2. Any (α/32)-accurate mechanism that makes the same take-it-or-
leave-it offer to every individual xi ∼ D must in expectation pay in total at
least Θ( v(

α
8 )

α ). Note that because here we assume cost functions are linear, this
quantity is fixed independent of the number of agents the mechanism draws from
D.

We now wish to bound the expected cost of our mechanism, and compare it to
our benchmark cost, BenchMarkCost = Θ( v(

α
8 )

α ).

Theorem 5. The total expected cost of our mechanism is at most

E[MechanismCost] = O

(
log log (α · v(α/8)) · BenchMarkCost +

1
α2

)
= O

(
log log

(
α2 · BenchMarkCost

)
· BenchMarkCost +

1
α2

)
.

Remark 3. Note that the additive 1/α2 term is necessary only in the case in
which v(α/8) ≤ (1 + η)/α: i.e., only in the case in which the very first offer will
be accepted by a 1− α/8 fraction of players with high probability. In this case,
we have started off offering too much money, right off the bat. An additive term
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is necessary, intuitively, because we cannot compete with the benchmark cost in
the case in which the benchmark cost is arbitrarily small.4

7 Discussion

In this paper, we have proposed a method for accurately estimating a statistic
from a population that experiences cost as a function of their privacy loss. The
statistics we consider here take the form of the expectation of some predicate
over the population. We leave to future work the consideration of other, nonlin-
ear, statistics. We have circumvented the impossibility result of [2] by using a
mechanism empowered with the ability to approach individuals and make them
take-it-or-leave-it offers (instead of relying on a direct revelation mechanism),
and by relaxing the measure by which individuals experience privacy loss. Mov-
ing away from direct revelation mechanisms seems to us to be inevitable: if costs
for privacy can be correlated with private data, then merely asking for individ-
uals to report their costs is inevitably disclosive, for any reasonable measure of
privacy. On the other hand, we do not claim that the model we use for how
individuals experience cost as a function of privacy is “the” right one. Neverthe-
less, we have argued that some relaxation away from individuals experiencing
privacy cost entirely as a function of the differential privacy parameter of the
entire mechanism is inevitable (as made particularly clear in the setting of take-
it-or-leave-it offers, in which individuals in this model would accept arbitrarily
low offers). In particular, we believe that the style of survey mechanism pre-
sented in this paper, in which the mechanism may approach individuals with
take-it-or-leave-it offers, is realistic, and any reasonable model for how individ-
uals value their privacy should predict reasonable behavior in the face of such a
mechanism.
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