BEGIN:VCALENDAR BEGIN:VEVENT SUMMARY:EE Seminar - From DC to Daylight: Harnessing Electromagnetic Fields for Bioelectronics, Wireless Communications, and Silicon Photonics DESCRIPTION:Speaker: Constantine Sideris, Postdoctoral Scholar, Caltech Talk Title: From DC to Daylight: Harnessing Electromagnetic Fields for Bioelectronics, Wireless Communications, and Silicon Photonics Abstract: Maxwell's equations are responsible for explaining the fundamental operating principles behind most of today's technology. In this talk, we will explore how understanding and controlling electromagnetic fields can lead to significant impact across a multitude of applications over a wide frequency range on the electromagnetic spectrum. Starting from the low-frequency end of the spectrum, I will present the design and implementation of a new integrated magnetic biosensor. The magnetic biosensor is fabricated in a standard CMOS foundry process without any post-fabrication processing and can perform in-vitro detection of DNA, proteins, and cells by utilizing magnetic nanoparticles as labels. We will discuss three different, improved sensor designs, which address sensor gain uniformity, enable multiplex target detection, and compensate sensor electrical and thermal drift based on spatial and temporal manipulations of the magnetic fields. I will present initial in-vitro biodetection experiments, and discuss future research directions moving towards in-vivo sensing with wearable and implantable devices, as well as actuation via targeted therapeutics. Next, we will look into the RF domain and develop maximal performance bounds for antennas. I will present a rapid simulation technique which, when coupled with heuristic optimization algorithms, can quickly and effectively produce new antenna structures de-novo with little or no manual intervention. The efficacy of these techniques will be shown in the context of a 3D printed coupling antenna for a dielectric waveguide communication link. Moving higher in frequency, we will explore the near-infrared (NIR) part of the spectrum in the context of silicon photonic device optimization. I will present on-going work in designing grating coupler and power splitting devices with arbitrary splitting ratios by using adjoint optimization and highly efficient integral equation techniques. We will also explore exciting future directions in these research areas, leveraging modern computation and efficient numerical algorithms as well as holistic co-design of circuits and electromagnetics. Biography: Constantine Sideris received the B.S., M.S., and PhD degrees with honors from the California Institute of Technology in 2010, 2011, and 2016 respectively. He was a visiting scholar at UC Berkeley's Wireless Research Center from 2013 to 2014. He was a lecturer in the Electrical Engineering department for Caltech's popular machine learning project course in 2017. He is currently a postdoctoral scholar in the Electrical Engineering and Computational and Mathematical Sciences departments at Caltech. His research interests include RF and millimeter-wave integrated circuits and computational electromagnetics for biomedical applications, wireless communications, and silicon photonics. He was a recipient of an NSF graduate research fellowship in 2010, the Analog Devices Outstanding Student Designer Award in 2012, and the Caltech Leadership Award in 2017. Host: Murali Annavaram, annarvarm@usc.edu DTSTART:20180418T150000 LOCATION:EEB 248 URL;VALUE=URI: DTEND:20180418T160000 END:VEVENT END:VCALENDAR