BEGIN:VCALENDAR BEGIN:VEVENT SUMMARY:Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute Seminar DESCRIPTION:Speaker: Douglas Densmore, Department of Electrical and Computer Engineering, Boston University Talk Title: Genetic Circuits, Cloud Labs, and COVID-19: CPS as Applied to Synthetic Biology Series: Center for Cyber-Physical Systems and Internet of Things Abstract: Synthetic biology is the process of forward engineering living systems. These systems can be used to produce bio-based materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, and formal models. Together these form the foundation of "bio-design automation", where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. In this talk, I will discuss three general topics. The first is how software tools can be created to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits". The second topic is how these genetic circuits can be automatically communicated to both local and community "cloud labs" where robotics, assembly-line style automation, and formalized protocol descriptions can be employed to safely and efficiently manufacture these systems. Finally, I will conclude with how these two elements have combined in to power the BU Clinical Testing Laboratory where over 5000 COVID-19 tests are performed daily. Biography: Douglas Densmore is a Kern Faculty Fellow, a Hariri Institute for Computing and Computational Science and Engineering Faculty Fellow, and Associate Professor in the Department of Electrical and Computer Engineering at Boston University. His research focuses on the development of tools for the specification, design, assembly, and test of synthetic biological systems. His approaches draw upon his experience with embedded system-level design and electronic design automation (EDA). Extracting concepts and methodologies from these fields, he aims to raise the level of abstraction in synthetic biology by employing standardized biological part-based designs which leverage domain-specific languages, constraint-based genetic circuit composition, visual editing environments, microfluidics, and automated DNA assembly. This leads to a new research area he calls "Hardware, Software, Wetware Co-design".\n Host: Pierluigi Nuzzo, nuzzo@usc.edu Webcast: https://usc.zoom.us/webinar/register/WN_YSl0DRVOQJetWGNAACPOYQ DTSTART:20200930T140000 LOCATION: Online URL;VALUE=URI: DTEND:20200930T150000 END:VEVENT END:VCALENDAR