Errata of Modern Nonconvex Nondifferentiable Optimization

July 29, 2022

• Page 5, the first paragraph of the proof of Proposition 1.1.1.

Replace the sentence "For each positive integer ν , let i_{ν} be the smallest integer greater than ν such that $||x^{i_{\nu}} - x^{\infty}|| > \delta$ " with the following one:

Let $\{x^{j_{\nu}}\}$ with $j_{\nu+1} > j_{\nu}$ be a subsequence in the neighborhood of $\mathcal{N}(x^{\infty}, \delta)$ converging to x^{∞} . For each ν , let i_{ν} be the smallest integer $i > \max(j_{\nu}, i_{\nu-1})$ such that $||x^{i_{\nu}} - x^{\infty}|| > \delta$.

- Page 5, the last line. The second S_{ν_1} should be S_{ν_2} .
- Page 19, the last line. The term $x = x^* + J_x F(x^*, y^*)^{-1} [e(x, y) + F(x^*, y)]$ should be $x = x^* J_x F(x^*, y^*)^{-1} [e(x, y) + F(x^*, y)]$.
- Page 20, the third display, $x(y) x(z) = \cdots$ should be $x(z) x(y) = \cdots$.
- Page 20, the display below (1.15) and the last display on this page, the most right sides should have an additional term $o(||x(y^* + h) x(y^*)||)$.
- Page 26, Exercise 1.2.4. Change to the following:

For a vector x (or a matrix A), let |x| (or A) be the vector (or the matrix) whose components are equal to the absolute values of the corresponding components of x (or A). A norm $\| \bullet \|$ on \mathbb{R}^n is said to be monotonic if $|x| \leq |y|$ implies $\|x\| \leq \|y\|$ for all x and y in \mathbb{R}^n . Similarly, a norm $\| \| \bullet \| \|$ on $\mathbb{R}^{n \times n}$ is monotonic if $|A| \leq |B|$ implies $\| \|A\| \| \leq \| \|B\| \|$.

Show the following:

- (a) A vector norm $\| \bullet \|$ is monotonic if and only if $\|x\| = \| |x| \|$ for all $x \in \mathbb{R}^n$.
- (b) A matrix norm induced by a monotonic vector norm is monotonic.
- Page 29, the last inequality in the proof of Proposition 1.2.3,

$$||| (\mathbb{I} - A)^{-1} ||| \ge \frac{||| \mathbb{I} |||}{|| \mathbb{I} + A |||}$$

should be

$$||| (\mathbb{I} - A)^{-1} ||| \ge \frac{||| \mathbb{I} |||}{||| \mathbb{I} - A |||}.$$

- Page 32, line 13. "each column of Q is an eigenvector of the corresponding diagonal entry of A" should be "....of the corresponding diagonal entry of D".
- Page 39, the proof from (h) \Rightarrow (i) only shows the nonnegativity of trace(AB) and does not show this term is strict positive if $B \neq 0$.
- Page 43, line 18. A " β " is missing in the third equation. The correct one should be

$$Ar = Aq - \beta Ap = e^{i\theta_2} Az - \beta e^{i\theta_1} Ax = \rho(A)r.$$

- Page 51, line -2. "n" should be ℓ .
- Page 53, line -3 in proof of Proposition 1.4.1. The exponent -1 in $\beta_{\nu-1}$ should be removed.
- Page 56, fifth line below Exercise 1.5.1, $\Phi : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ should be $\Phi : \mathbb{R}^n \Rightarrow \mathbb{R}^m$.
- Page 58, Theorem 1.5.1. Let $\Phi: \mathcal{O} \rightrightarrows \mathbb{R}^m$ should be $\Phi: \mathcal{O} \rightrightarrows \mathbb{R}^n$.

- Page 66, Proposition 2.1.1(3). It should be: there exists $y \ge 0$ such that $A^{\top}y < 0$.
- Page 91, Lemma 2.5.1. The correct statements should be:

Suppose that f is continuously differentiable. Let $\{x^{\nu}\}$ be an infinite sequence generated by Algorithm 2.5.1. If $\{x^{\nu}\}$ and $\{d^{\nu}\}$ are bounded, then the following statements must hold:

- (a) The sequence $\{f(x^{\nu})\}$ converges.
- (b) $\lim_{\nu \to \infty} \nabla f(x^{\nu})^{\top} d^{\nu} = 0.$
- Page 92, Theorem 2.5.1. Need to assume that the direction d^{ν} to be gradient related to $\{x^{\nu}\}$, i.e., for any subsequence of $\{x^{\nu}\}_{\nu \in \kappa}$ converging to a nonstationary point, $\limsup \nabla f(x^{\nu})^{\top} d^{\nu} < 0$.
- Page 134. The term $Y^{\top}Z$ should be $\operatorname{tr}(Y^{\top}Z)$.
- Page 140. The closure of the set is \mathbb{R}^2 .
- Page 167, line 14. The term x' should be w'.
- Page 475, Lemma 8.3.1, the convexity of the set X needs to be dropped (the proof remains valid) because in the application to Proposition 8.5.6, the set $S_c(x)$ may not be convex.
- Page 536, Theorem 9.2.1 and related results, the Lipschitz continuity of f on the closed set X should be replaced by its Lipschitz continuity on an open set where the boundedness condition: $f'(\bar{x};v) \leq L||v||$ holds; e.g., in a neighborhood of \bar{x} .
- Page 663, line 2. The term p^q should be p^{-q} .
- Page 667, one line before expression (11.9): "be" should be "being"; first line after expression (11.9): b_{i1} should be β_{i1} .
- Page 671, second bullet in statement of Proposition 11.2.1, ∇_x should be ∇_{x^i} .
- Page 672, Proposition 11.2.2 needs the map Φ to be nonempty-valued and compact-valued.
- Page 678, Proposition 11.2.3 requires the same nonempty-valuedness and compact-valuedness of Φ .
- Page 679, line -3 before end of proof: τ should be τ_{ν} .
- Page 679, Exercise 11.3.1. First line $\{\widehat{f}\}_{i=1}^N$ should be $\{\widehat{f}_i\}_{i=1}^N$.
- Page 687, 5 lines below Example 11.4.1: asterisk * is missing in x^{-i} .
- Page 696, expression (11.36): -g(x) should be on the next line.
- Page 696, line -4: "constraint" -; "condition".
- Page 699, 2 lines in proof of Lemma 11.5.1: $\widehat{\Xi}$ should be $\overline{\Xi}$ and a superscript transpose \top is missing after $\overline{\pi}$.
- A lot of places: implicit convex-concave functions should be implicitly convex-concave functions.