Logo: University of Southern California

Events Calendar

Select a calendar:

Filter March Events by Event Type:

Events for March 10, 2014

  • Astani CEE Department Seminar

    Mon, Mar 10, 2014 @ 11:00 AM - 12:00 PM

    Sonny Astani Department of Civil and Environmental Engineering

    Conferences, Lectures, & Seminars

    Speaker: Debora F. Rodrigues , University of Houston

    Talk Title: Environmental Engineering Implications and Applications of Carbon-Based Nanomaterials

    Abstract: Carbon-based nanomaterials, such as carbon nanotubes, graphene, and graphene oxide, have unique antimicrobial, physical, chemical, electrical, optical and mechanical properties that make them very valuable materials for materials science, high-energy physics, and a wide range of technological applications. In fact, the market for carbon-based nanomaterial products is projected to reach nearly $675 million by 2020, hence it is expected that large quantities of graphene-based wastes will be generated by then. If nanomaterials are to be widely utilized, they will find their way into the environment through human activities, wastewater discharge, industrial effluents, and runoff from nearby contaminated land. Aquatic systems are expected to be the ultimate repository for nanomaterials, which poses a special concern because aquatic systems are composed of diverse microorganisms that keep the aquatic environment ecologically balanced. These microorganisms are also responsible for removing unwanted wastes released into the wastewater treatment system through various biogeochemical cycles, such as nitrogen, phosphorous, sulfur, and carbon cycles. The theme of my research is to understand the toxicological mechanisms and effects on microbial biogeochemical cycles of emerging graphene-based nanomaterials. Additionally, I investigate alternative solutions to reduce the use of these nanomaterials, and therefore reduce their release into the environment. The approach used by my research group is the utilization of polymers, such as polyvinyl-N-carbazole (PVK), to develop nanocomposites that contain small amounts of carbon-based nanomaterials as fillers. The PVK polymer was selected to generate carbon-based nanocomposites since it stabilizes the dispersion of the nanomaterials in any solution chemistry due to the ( ) stacking interaction of the PVK carbazole group with the aromatic rings of the carbon-based nanomaterials. The well-dispersed nanocomposite can, then, be easily used to modify membranes for water purification. These modified membranes are much more effective in the inactivation and removal of viruses and bacteria from water than unmodified ones.

    Biography: Debora F. Rodrigues received her BS and MS in Biology and Microbiology, respectively, from the University of Sao Paulo, Brazil, and her PhD in Microbiology and Molecular Genetics from Michigan State University in 2007 under the supervision of Prof. James Tiedje. In her MS research she demonstrated the presence of genes involved in the degradation of polychlorinated biphenyls (PCBs) and hydrocarbons in Brazilian estuaries. Her PhD work focused on the physiology and diversity of microorganisms in the Siberian permafrost. She was a postdoctoral associate in the Environmental Engineering Program at Yale University in the group of Prof. Menachem Elimelech from 2007 to June 2010. Her research at Yale dealt with toxicity of carbon nanotubes to microorganisms as well as the effect of bacterial surface structures on bacterial adhesion and biofilm formation and maturation. She is currently an Assistant Professor at the University of Houston in the Department of Civil and Environmental Engineering. Her research interests involve investigation of the toxicological effects of carbon-based nanomaterials and polymer nanocomposites

    Host: Astani CEE Department

    Location: Kaprielian Hall (KAP) - 209

    Audiences: Everyone Is Invited

    Posted By: Cassie Cremeans

  • Intelligent Power Systems: From Physics of Power Flows to Data Analytics

    Mon, Mar 10, 2014 @ 11:00 AM - 12:00 PM

    Ming Hsieh Department of Electrical Engineering

    Conferences, Lectures, & Seminars

    Speaker: Baosen Zhang, Stanford University

    Talk Title: Intelligent Power Systems: From Physics of Power Flows to Data Analytics

    Abstract: The power system is undergoing a dramatic transformation to the meet the challenges and opportunities of renewable and distributed energy resources. In this talk, I will show how an understanding between the energy producers, consumers and the physical network allows us to design a smarter and more efficient grid. The first part of this talk will give a geometric understanding of the geometry of power flows in the network through the optimal power flow (OPF) problem, which is known to be non-convex and difficult to solve. By investigating the feasible injection region of the problem, we show that the Pareto-Front of the injection region is invariant under the convex hull operation for distribution networks. Therefore the OPF problem can be solved exactly in the distribution networks. Furthermore, this geometric picture allows us to design algorithms that are either distributed or even without any explicitly communication. The second part will focus on consumer behaviors to illustrate how and who should implement these algorithms in practice. Using real smart meter data from households in Northern California, I will show that there is a natural set of customer groupings that there are much more efficient customer management architectures than those employed by current utilities. The key is to identify the optimal trade-off between managing the uncertainties in the system and efficiency loss bought on by large groups. Extending this idea to large scale renewable producers, a central theme emerges: there is a “correct” level of collaboration among the resources that is crucial to the design for new power systems.

    Biography: Baosen Zhang is a postdoctoral scholar at Stanford University, jointly hosted by the departments of Civil and Environmental Engineering and Management Sciences and Engineering. He received his Ph.D. from the University of California, Berkeley in the department of Electrical Engineering and Computer Science. Before that, he received his B.A.Sc. Degree from the University of Toronto. His interest is in the control and optimization of power systems, especially the connection between data and the physical system. He is a recipient of the Canadian Graduate Scholarship from the government of Canada and a EECS fellowship from Berkeley.

    Host: Rahul Jain

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Posted By: Annie Yu

  • Seminars in Biomedical Engineering

    Mon, Mar 10, 2014 @ 12:30 PM - 01:50 PM

    Biomedical Engineering

    Conferences, Lectures, & Seminars

    Speaker: Nicholas Schweighofer, Ph.D., Associate Professor, Department Biokinesiology & Physical Therapy

    Talk Title: Computational Neurorehabilitation: Modeling Recovery Post-Stroke

    Host: David D'Argenio

    Location: Olin Hall of Engineering (OHE) - 132

    Audiences: Everyone Is Invited

    Posted By: Mischalgrace Diasanta

  • Epstein ISE Department Seminar

    Mon, Mar 10, 2014 @ 03:30 PM - 04:30 PM

    Daniel J. Epstein Department of Industrial and Systems Engineering

    Conferences, Lectures, & Seminars

    Speaker: Victor Zavala, Assistant Computational Mathematician, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

    Talk Title: "A Stochastic Electricity Market Setting with Fair Pricing Properties"

    Abstract: We argue that deterministic market clearing settings introduce strong price distortions (difference between day- ahead and expected real-time prices) that lead to arbitrage, biased (unfair) payments, and the need for uplifts. We propose a stochastic market clearing formulation in which deviations between day-ahead and real-time quantities are penalized using $\ell_1$ terms with parameters given by incremental bid prices. We prove that the formulation yields price distortions that are bounded by the incremental bid prices and prove that adding a similar penalty term to transmission flows ensures boundedness throughout the network. We provide conditions under which the stochastic formulation yields day-ahead quantities and flows that converge to the medians of real-time counterparts. This result implies that day-ahead variables only converge to expected value quantities when the distributions are symmetric. We demonstrate that convergence to expected value quantities can be induced using squared $\ell_2$ penalty terms. Our arguments against deterministic settings suggest that comparisons between deterministic and stochastic settings based solely on social surplus are insufficient to fully appreciate the benefits of stochastic settings. We thus present a new set of metrics to perform benchmarks. This is joint work with John Birge and Mihai Anitescu.

    MONDAY, MARCH 10, 2014
    3:30 - 4:30 PM

    Biography: Victor M. Zavala is an assistant computational mathematician in the Mathematics and Computer Science Division at Argonne National Laboratory and he is a fellow in the Computation Institute at the University of Chicago. He received his B.Sc. degree from Universidad Iberoamericana (2003) and his Ph.D. degree from Carnegie Mellon University (2008), both in chemical engineering. He is currently a recipient of the DOE Office of Science Early Career Award under which he develops scalable algorithms for optimization under uncertainty. He also leads an advanced grid modeling project funded by DOE Office of Electricity to develop and test large-scale power grid models and he participates in the Multifaceted Mathematics for Complex Energy Systems project funded by DOE Office of Science. His research interests are in the areas of mathematical modeling of energy and power systems, uncertainty modeling, stochastic optimization, and real-time operations.

    Host: Daniel J. Epstein Department of Industrial and Systems Engineering

    More Information: Seminar-Zavala.doc

    Location: Ethel Percy Andrus Gerontology Center (GER) - Room 206

    Audiences: Everyone Is Invited

    Posted By: Georgia Lum

  • Engineering, Neuroscience & Health (ENR)

    Mon, Mar 10, 2014 @ 04:00 PM - 04:00 PM

    Biomedical Engineering

    Conferences, Lectures, & Seminars

    Speaker: Eve Marder, Brandeis University

    Talk Title: TBA

    Series: Engineering, Neuroscience & Health (ENH Seminars)

    Biography: http://blogs.brandeis.edu/marderlab/research/
    Host: Francisco Valero-Cuevas

    More Info: Refreshments will be served from 3.30 to 4 pm.

    Webcast: http://capture.usc.edu/Mediasite/Catalog/Full/946350f1ca8440e7b867e16adba01e4e21/?state=xJE9EJIqlAdw4AAliKf

    Location: Hedco Neurosciences Building (HNB) - 100

    WebCast Link: http://capture.usc.edu/Mediasite/Catalog/Full/946350f1ca8440e7b867e16adba01e4e21/?state=xJE9EJIqlAdw4AAliKfp

    Audiences: Everyone Is Invited

    Posted By: Mischalgrace Diasanta