SUNMONTUEWEDTHUFRISAT
Events for March 01, 2007
-
When Amdahl and Off-die Bandwidth Kill CMP Scaling: Two Tough Problems and Two Radical Solutions
Thu, Mar 01, 2007 @ 10:30 AM - 11:30 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
"When Amdahl and Off-die Bandwidth Kill CMP Scaling: Two Tough Problems and Two Radical Solutions"Murali AnnavaramNokia Research Center, Palo AltoAbstract:The continuous increase in transistor density coupled with the simultaneous reduction in chip power budget caused a major paradigm shift in the processor design. The chip industry is moving away from high frequency power hungry uniprocessors towards chip multiprocessors (CMPs) with many lower power cores. The road to CMP scaling, however, has two significant barriers. First, single threaded applications parallelized to take advantage of CMPs will have unavoidable phases of sequential execution. Amdahl's law dictates that the speedup of such parallel programs will be limited by the sequential portion of the computation. The second barrier to CMP scaling is that the off-die bandwidth requirement will grow dramatically as the working set of multi-threaded applications grows with the thread count. Furthermore, increased thread level parallelism results in reduced shared cache locality, as interleaved accesses from multiple threads appear random at the shared cache level. The twofold effects of increased working set size and reduced locality will place significant pressure on the limited number of pins to reach off-die memory.This talk focuses on these two problems and presents two radical solutions. In the first part of this talk, I will present Energy Per Instruction (EPI) throttling -- a novel mechanism for mitigating Amdahl's bottleneck by varying the amount of energy expended to process instructions according to the amount of available parallelism. When a program enters a sequential phase the EPI throttling mechanism assigns all available energy to a single processor so as to execute the sequential phase quickly; conversely, when a program enters a parallel phase energy is distributed to several cores within the CMP so as to process as many instructions in parallel as possible. More generally, using the equation, Power=Energy per instruction (EPI) * Instructions per second (IPS), EPI throttling proposes that during phases of limited parallelism (low IPS) the chip multi-processor will spend more EPI; similarly, during phases of higher parallelism (high IPS) the chip multi-processor will spend less EPI. The performance benefits of an EPI throttle are evaluated on an asymmetric multiprocessor (AMP) prototyped from a physical 4-way Xeon SMP server. Using a wide range of multi-threaded programs, I will show a 38% wall clock speedup using EPI throttled AMP compared to a standard SMP that uses the same power. In the second part of this talk, I will present 3D stacking technology that not only enables stacking large capacity DRAM caches on CMPs but also provides tremendous bandwidth using die to die vias. I will focus on the design challenges of stacking DRAM on CMPs. In particular, I will show that due to the limited DRAM banking the number of page opens increase dramatically as more threads access the DRAM cache. Using detailed simulation results, I will show that, contrary to popular belief, simply stacking a DRAM cache on a CMP does not provide the expected benefits of stacked memory. Using a PC-based stride prefetching mechanism I will show that random page access behavior can be mitigated thereby allowing 3D stacked DRAM to provide the necessary bandwidth and capacity required for CMP scaling.Speaker Bio:Murali Annavaram is a researcher at the Nokia research center in Palo Alto. His current research is focused on exploring mobile device features required for providing location and context-aware computing services. Prior to Nokia he was a senior research scientist at Intel microprocessor research labs where his research spanned the entire spectrum of systems architecture ranging from high level software issues to low level device variations. His research at Intel includes 3D stacking, EPI throttling for power efficient CMP designs, impact of process variability on chip designs, characterizing server workloads for improving simulation and tracing technologies. Murali received his PhD from University of Michigan working with Prof. Ed Davidson focusing on prefetching techniques for irregular applications.Hosted by: Prof. Michel Dubois, dubois@paris.usc.edu
Location: Hughes Aircraft Electrical Engineering Center (EEB) - -248
Audiences: Everyone Is Invited
Contact: Rosine Sarafian
-
New Approaches in Large Systems: Theory and Algorithms
Thu, Mar 01, 2007 @ 02:30 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Chandra Nair, Microsoft ResearchAbstract: This talk will contain two parts: The dominant part, as the title suggests, will be about a novel and exciting interplay between various disciplines that has led to new approaches to solve problems in large systems. The second part will address a very well-known information theoretic open problem, i.e. determining the capacity region of a broadcast channel, and I shall present new outer bounds on the set of achievable rates that supersede the existing best known outer bounds.Large systems such as internet, large error correcting codes, gene networks, etc. present a new class of problems that are different from the traditional optimization problems in smaller systems. Instead of seeking exact answers, one is often satisfied with very good approximations that can be computed in an efficient, distributed and robust manner. Further due to the presence of a large system of interacting objects one also expects some generic macroscopic behavior to emerge. These constraints and effects are quite different from the behavior or premises under which the smaller systems have been studied and hence the traditional approaches are insufficient.Over the past few years new approaches from Spin Glass Theory, a branch of statistical physics, have been used to propose solutions and efficient algorithms for hard optimization problems in Electrical Engineering, Computer Science, and more recently in Biological networks. This talk will overview this interplay and focus on some examples: (i) The Random Assignment Problem (RAP), which arises in a variety of practical scenarios; notably in crossbar switch scheduling.
(ii) The Number Partitioning Problem (NPP), which models load balancing and multiprocessor scheduling.
(iii) Designing exact message passing algorithms on loopy graphs.In the first two examples listed above, I shall overview the resolutions of certain conjectures in these problems, conjectures that were motivated by heuristic arguments from Physics.In the second part of the talk, I will address a very traditional problem in multi-user information theory. This concerns obtaining the capacity region of a system with one transmitter and two receivers with private messages, called the broadcast channel, a problem that is still open. In this talk, I will show a new outer bound that is better than the previously best known outer bound due to Korner and Marton (1979).Biography: Chandra Nair is a Post-Doctoral researcher with the theory group at Microsoft Research, Redmond. He obtained his PhD from the Electrical Engineering Department at Stanford University in June 2005. He obtained the Bachelor's degree in Electrical Engineering from IIT, Madras. His research interests are in developing and applying tools from probability, combinatorics and statistical physics to solve discrete optimization problems that arise in large systems, esp. those in Electrical Engineering, Computer Science and very recently, in biological systems. He is also interested in information theory, algorithm design, and networks. He has received the Stanford Graduate Fellowship(2000-2004) and Microsoft Graduate Fellowship(2004-2005) for his graduate studies, and he was awarded the Philips and Siemens(India) Prizes for his undergraduate studies.Host: Giuseppe Caire, caire@usc.eduLocation: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Gerrielyn Ramos