SUNMONTUEWEDTHUFRISAT
Events for March 20, 2019
-
ECE Seminar: Harnessing Nature to Make Wireless Positioning Practical and Accurate
Wed, Mar 20, 2019 @ 11:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Manikanta Kotaru, Ph.D. Candidate, Stanford University
Talk Title: Harnessing Nature to Make Wireless Positioning Practical and Accurate
Abstract: Positioning has been the Holy Grail of wireless sensing research with a wide range of applications from tracking virtual reality devices to in-body implants. However, despite two decades of active research, a widely deployable system with high accuracy has always been elusive. Wireless signals reflected from objects in the environment interfere with and distort the signal from the intended target device, corrupting the position estimates. In order to fight this 'multipath' phenomenon, previous approaches built specialized wireless devices with huge antenna arrays or large bandwidths making them impractical for ubiquitous deployment. In this talk, I will introduce a new technique called 'Synthetic Aperture Radio' that harnesses, rather than fighting, the multipath that naturally occurs in the environment and exploits the device motion that naturally occurs in these applications. By applying this technique, I have demonstrated the first real-time and centimeter-level accurate positioning system using standard, off-the-shelf WiFi radios. Building on synthetic aperture radio technique, I have developed practical positioning systems for indoor navigation, tracking virtual reality accessories and resource constrained devices like endoscopic capsules. Looking forward, these techniques lay a foundation for utilizing ubiquitous wireless devices for developing important machine vision applications in various domains like medical sensing, physical security and autonomous vehicles.
Biography: Manikanta Kotaru is a Ph.D. candidate in Electrical Engineering at Stanford University. His research focuses on building widely-accessible computational sensing systems with applications in robotics, virtual reality, Internet of Things and medical sensing. His research bridges RF sensing and machine vision, and brings theory and systems together. His work has appeared in premier conferences in both communications and computer vision such as SIGCOMM and CVPR. He is a recipient of Stanford Graduate Fellowship.
Updated: 03/15/2019
Host: Professor Pierluigi Nuzzo, nuzzo@usc.edu
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Mayumi Thrasher
-
Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute Seminar Series
Wed, Mar 20, 2019 @ 03:00 PM - 04:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Antonis Papachristodoulou, University of Oxford
Talk Title: Exploiting Sparsity in Semidefinite and Sum of Squares Programming
Series: Center for Cyber-Physical Systems and Internet of Things
Abstract: Semidefinite and sum of squares optimization have found a wide range of applications, including control theory, fluid dynamics, machine learning, and power systems. In theory they can be solved in polynomial time using interior-point methods. However, these methods are only practical for small- to medium- sized problem instances.
For large instances, it is essential to exploit or even impose sparsity and structure within the problem in order to solve the associated programs efficiently. In this talk I will present recent results on the analysis and design of networked systems, where chordal sparsity can be used to decompose the resulting SDPs, and solve an equivalent set of smaller semidefinite constraints. I will also discuss how sparsity and operator-splitting methods can be used to speed up computation of large SDPs and introduce our open-source solver CDCS. Lastly, I will extend the decomposition result on SDPs to SOS optimization with polynomial constraints, revealing a practical way to connect SOS optimization and DSOS/SDSOS optimization for sparse problem instances.
Biography: Antonis Papachristodoulou joined the University of Oxford in 2006, where he is currently Professor of Engineering Science and a Tutorial Fellow in Worcester College. Since 2015, he has been EPSRC Fellow and Director of the EPSRC & BBSRC Centre for Doctoral training in Synthetic Biology. He holds an MA/MEng in Electrical and Information Sciences from the University of Cambridge (2000) and a PhD in Control and Dynamical Systems from the California Institute of Technology, with a PhD Minor in Aeronautics (2005). In 2015 he was awarded the European Control Award for his contributions to robustness analysis and applications to networked control systems and systems biology and the O. Hugo Schuck Best Paper Award. He is an IEEE Fellow for contributions to the analysis and design of networked control systems. He serves regularly on Technical Programme Committees for conferences, and was associate editor for Automatica and IEEE Transactions on Automatic Control.
Host: Paul Bogdan
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Talyia White