Select a calendar:
Filter March Events by Event Type:
Events for March 21, 2012
-
Adaptive Computing for a Dynamic, Data-driven World
Wed, Mar 21, 2012 @ 11:30 AM - 12:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Yogesh Simmhan, Ming Hsieh Department of Electrical Engineering, University of Southern California
Abstract: The pervasiveness of technology is providing the unprecedented ability to observe the physical, social and cyber worlds, and offering access to massive datasets that can be used to manage and optimize these systems. Advances in computing are democratizing access to large scale, distributed resources on Cloud platforms, on-demand. The successful fusion of data availability with computational capability has the potential for disruptive advances for society; from personalized healthcare to sustainable energy to informed policies.
As an exemplar of this fusion, this talk will explore two facets of research into computational and informatics systems that are being leveraged for the Los Angeles Smart Grid Project: (1) Adaptive computing on Clouds for dynamic data, and (2) Scalable data analytics for decision support.
The growing data deluge is both dynamic and continuous, streaming in from smart power meters and social networks. Our research examines compositional programming frameworks that can adapt to changing data flows and evolving application needs, while ensuring resilience on Cloud infrastructure. We also investigate complex event pattern detection over moving data to trigger responses such as demand curtailment in a power grid.
The overwhelming size and diversity of data require automated analysis. Machine-learnt models can help forecast power demand and adapt to changing usage profiles. Analysis of social network graphs offers additional insight into load shaping strategies. We discuss the use of Map-Reduce and its variants for large scale data analytics on Clouds to support decision making in the USC campus microgrid.
Biography: : Yogesh Simmhan is a Senior Research Associate at the Ming Hsieh Department of Electrical Engineering and the Center for Energy Informatics, University of Southern California. His research focuses on adaptive programming frameworks, dynamic data management, and large scale data analytics on emerging platforms like Clouds, with the goal of building scalable, resilient software systems. Yogesh serves as a project manager in the Los Angeles Smart Grid Project where he leads research into innovative data driven architectures for the USC microgrid that will translate into optimized demand-response in the city's smart grid. Yogesh has a Ph.D. in Computer Science from Indiana University and was previously with Microsoft Research.
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Estela Lopez
-
Understanding Two Multimodally Observable Systems: Speech Production and Human-Human Dyad Interaction
Wed, Mar 21, 2012 @ 01:00 PM - 02:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Nassos Katsamanis, Postdoctoral Research Associate/Signal Analysis and Interpretation Laboratory/Signal and Image Processing Institute
Talk Title: Understanding Two Multimodally Observable Systems: Speech Production and Human-Human Dyad Interaction
Abstract: Speech production has been modeled at the physical level as an accurately-timed choreography performed by interacting articulators in the vocal tract, e.g., the tongue or the lips. Each of them participates in the realization of gestures that possibly overlap in time and are directly responsible for the generation of certain phoneme sequences. This abstract view of a system as the composition of multiple interacting units -each with certain constraints and different behavioral characteristics that may also entrain with one another- has also been adopted in a completely different domain, for the study of human-human dyads. Towards achieving a common goal, each of the participants is assuming a certain role and tries to fulfill the personal subgoals involved. The multimodal behavior of the dyad reflects the realization of these efforts as the participants are constrained by individual personality traits and adapt to the specifics of the interaction at each instant.
Adopting this system-based perspective (as opposed to a phenomenological approach), I will present a range of computational techniques to model and interpret the continuous multimodal observations in the two domains on the basis of the underlying, synchronously or asynchronously interacting processes. I will focus on three major subproblems: inversion, process interaction modeling and prototypical behavior estimation.
Biography: Nassos Katsamanis received the Diploma in electrical and computer engineering (with highest honors) and the Ph.D. degree from the National Technical University of Athens, Athens, Greece, in 2003 and 2009 respectively. He is currently a Postdoctoral Research Associate at the Viterbi School of Electrical Engineering in the University of Southern California, member of the Signal Analysis and Interpretation Laboratory. His current research mainly lies in the areas of speech and multimodal signal analysis and processing aiming at the broader goal of interpretation and modeling of human behavior from audiovisual observations. Further, he is strongly interested and has been conducting research in image, acoustic and articulatory data processing for speech production modeling. In the frame of his Ph.D. studies and European and U.S. research projects, he has also worked on multimodal speech inversion, aeroacoustics for articulatory speech synthesis, speaker adaptation for non-native and children's speech recognition and multimodal fusion for audiovisual speech and sign language recognition.
More Information: Katsamanis Seminar.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Mayumi Thrasher
-
EE-Electrophysics Seminar
Wed, Mar 21, 2012 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: John Teufel, NIST Boulder
Talk Title: Quantum Microwave Optomechanical Circuits
Abstract: While mechanical oscillators are the basis for ultrasensitive detection of force, mass and displacement, only recently are these systems poised to encounter the limits and possibilities afforded by quantum mechanics. Accessing the full quantum nature of a macroscopic mechanical oscillator first requires elimination of its classical, thermal motion. The flourishing field of cavity optomechanics provides a nearly ideal architecture for both preparation and detection of mechanical motion at the quantum level. We realize a microwave cavity optomechanical system by coupling the motion of an aluminum membrane to the resonance frequency of a superconducting circuit [1]. By exciting the microwave circuit below its resonance frequency, we damp and cool the membrane motion with radiation pressure forces, analogous to laser cooling of the motion of trapped ions. The microwave excitation serves not only to cool, but also to monitor the displacement of the membrane. A nearly quantum-limited, Josephson parametric amplifier is used to detect the mechanical sidebands of this microwave excitation and quantify the thermal motion as it is cooled with radiation pressure forces to its quantum ground state [2].
[1] Teufel, J. D. et al. ìCircuit cavity electromechanics in the strong-coupling regime,î Nature 471, 204ñ208 (2011).
[2] Teufel, J. D. et al. ìSideband cooling micromechanical motion to the quantum ground state,î Nature 475, 359ñ363 (2011).
Biography: Dr. John Teufel completed his Ph.D. in physics at Yale University in the group of Robert Schoelkopf while developing superconducting photon detectors. He then joined Konrad LehnertÃs group at JILA as a postdoctoral researcher, where he investigated nanomechanical resonators by coupling them to superconducting microwave circuits. He is currently a research affiliate in the quantum devices group at NIST Boulder, where he continues to use cryogenic microwave circuits to explore the quantum properties of mechanical systems.
Host: EE-Electrophysics
More Info: ee.usc.edu/newsLocation: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
Event Link: ee.usc.edu/news