Events for March 27, 2023
-
ECE-S Seminar - Dr Alireza Fallah
Mon, Mar 27, 2023 @ 10:00 AM - 11:00 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr Alireza Fallah, PhD Candidate | Department of Electrical Engineering and Computer Science | Laboratory for Information and Decision Systems (LIDS), MIT
Talk Title: Data Markets and Learning: Privacy Mechanisms and Personalization
Abstract: The fuel of machine learning models and algorithms is the data usually collected from users, enabling refined search results, personalized product recommendations, informative ratings, and timely traffic data. However, increasing reliance on user data raises serious challenges. A common concern with many of these data-intensive applications centers on privacy -” as a user's data is harnessed, more and more information about her behavior and preferences is uncovered and potentially utilized by platforms and advertisers. These privacy costs necessitate adjusting the design of data markets to include privacy-preserving mechanisms.
This talk establishes a framework for collecting data of privacy-sensitive strategic users for estimating a parameter of interest (by pooling users' data) in exchange for privacy guarantees and possible compensation for each user. We formulate this question as a Bayesian-optimal mechanism design problem, in which an individual can share her data in exchange for compensation but at the same time has a private heterogeneous privacy cost which we quantify using differential privacy. We consider two popular data market architectures: central and local. In both settings, we use Le Cam's method to establish minimax lower bounds for the estimation error and derive (near) optimal estimators for given heterogeneous privacy loss levels for users. Next, we pose the mechanism design problem as the optimal selection of an estimator and payments that elicit truthful reporting of users' privacy sensitivities. We further develop efficient algorithmic mechanisms to solve this problem in both privacy settings. Finally, we consider the case that users are interested in learning different personalized parameters. In particular, we highlight the connections between this problem and the meta-learning framework, allowing us to train a model that can be adapted to each user's objective function.
Biography: Alireza Fallah is a Ph.D. candidate at the department of Electrical Engineering and Computer Science (EECS) and the Laboratory for Information and Decision Systems (LIDS) at Massachusetts Institute of Technology (MIT). His research interests are machine learning theory, data market and privacy, game theory, optimization, and statistics. He has received a number of awards and fellowships, including the Ernst A. Guillemin Best MIT EECS M.Sc. Thesis Award, Apple Scholars in AI/ML Ph.D. fellowship, MathWorks Engineering Fellowship, and Siebel Scholarship. He has also worked as a research intern at the Apple ML privacy team. Before joining MIT, he earned a dual B.Sc. degree in Electrical Engineering and Mathematics from Sharif University of Technology, Tehran, Iran.
Host: Dr Mahdi Soltanolkotabi, soltanol@usc.edu
Webcast: https://usc.zoom.us/j/93606233291?pwd=dGQxNWRZVmE1bzZvRVVYRTd1Mk1VQT09More Information: ECE Seminar Announcement 03.27.2023 - Alireza Fallah.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - EEB 248
WebCast Link: https://usc.zoom.us/j/93606233291?pwd=dGQxNWRZVmE1bzZvRVVYRTd1Mk1VQT09
Audiences: Everyone Is Invited
Contact: Miki Arlen
-
MoBI Seminar: Measuring Attention Control: Oscillations, Connectivity, ADHD
Mon, Mar 27, 2023 @ 11:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Agatha Lenartowicz, PhD, Associate Professor, Department of Psychiatry and Biobehavioral Sciences, UCLA
Talk Title: Measuring Attention Control: Oscillations, Connectivity, ADHD
Abstract: In this talk I will discuss our efforts to qualify and quantify the mechanisms of attention control. I will review neuroimaging measures - oscillations as measured by EEG, connectivity estimated by fMRI - that track attention-related processes, including how they may go awry in ADHD. I will also discuss the emerging questions in the measurement and conceptualization of these processes, their measurement, and their application to real-world settings.
Biography: Agatha Lenartowicz, Ph.D., is Associate Professor in the Department of Psychiatry and Biobehavioral Sciences at UCLA. She holds a Ph.D. degree in Psychology and Neuroscience from Princeton University, and has over 15 years' experience in cognitive neuroscience of attention and its deficits. Over the past seven years, she has worked to develop a translational arm to her research, including basic mechanisms and rehabilitative approaches to attention deficits in ADHD, and is a past Klingenstein Third Generation Fellow and a NARSAD Young Investigator in recognition of this translational work. She is a pioneer in the use of concurrent EEG-fMRI recordings in the study of the attention system and especially its disorders in ADHD. She is also actively building a mobile-EEG research program to assess attention in the real-world, in particular in the classroom. Dr. Lenartowicz is the Operations Director at the Staglin OneMind IMHRO Center for Cognitive Neuroscience and is the director of the EEG Analysis Core at the Semel Institute of Neuroscience and Human Behavior.
Host: Dr. Karim Jerbi, karim.jerbi.udem@gmail.com and Dr. Richard M. Leahy, leahy@sipi.usc.edu
Webcast: https://usc.zoom.us/j/96014499242?pwd=a0NFMS93VUhOaUhuc1JCMlQ3TUludz09Location: Hughes Aircraft Electrical Engineering Center (EEB) - 539
WebCast Link: https://usc.zoom.us/j/96014499242?pwd=a0NFMS93VUhOaUhuc1JCMlQ3TUludz09
Audiences: Everyone Is Invited
Contact: Mayumi Thrasher
-
ECE-EP seminar - Eric Pollmann, Monday, March 27th at 2pm in EEB 248
Mon, Mar 27, 2023 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Eric Pollmann, Columbia University
Talk Title: Implantable CMOS Optoelectronics for Bidirectional Neural Interfacing
Series: ECE-EP Seminar
Abstract: Optical neurotechnologies use light to interface with neurons and overcome the limitations associated with penetrating electrodes and glial scarring in electrophysiology. Miniaturized microscopes monitor and manipulate neural activity with high spatial-temporal precision over large cortical extents; however, current implementations still require a chronic opening in the dura and skull that matches or exceeds the field-of-view of the implant. Viable translation of these technologies to human clinical use will require a much more noninvasive, fully implantable form factor. In my talk, I will introduce the first subdural CMOS optical probe (SCOPe) for bidirectional optical stimulation and recording in mouse and nonhuman primates. This radical improvement in implantability is achieved through the design of a CMOS ASIC consisting of monolithically integrated SPADs for low-light-intensity imaging and dual color flip-chip bonded micro-LEDs for light emission. Along with a fully flexible electronic packaging, I will present the heterogeneous integration of the light sources, filters, and lens-less computational imaging masks required for a high-performance optical neural interface. This transformative, ultrathin, miniaturized device was validated in a sequence of in vivo mouse and nonhuman primate experiments and defines a path for the eventual human translation of a new generation of brain-machine interfaces based on light.
Biography: Eric H. Pollmann received the Ph.D. degree in 2023 advised by Kenneth Shepard in the Department of Electrical Engineering at Columbia University. Previously, he received the B.S. degree in Electrical Engineering from the Georgia Institute of Technology in 2017, and the M.S. degree in Electrical Engineering from Columbia University in 2018. His research lies at the intersection of integrated circuit and system design, applied optics, and neurotechnology and has resulted in multiple publications in top-tier IEEE conferences and journals. In addition to research work, he was the recipient of the 2021 IEEE CASS Predoctoral Fellowship.
Host: ECE-Electrophysics
More Information: Eric Pollmann Seminar Announcement.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski