SUNMONTUEWEDTHUFRISAT
Events for March 31, 2014
-
The constant battle for power-efficient computing
Mon, Mar 31, 2014 @ 10:30 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: George Michelogiannakis, Lawrence Berkeley National Laboratory
Talk Title: The constant battle for power-efficient computing
Abstract: Recent technology scaling has led to the realization that communication, and not computation, dominates energy costs. This realization, coupled with the constant increase of parallelism and the fact that power consumption is typically the primary design constraint, results in increased difficulty in providing sufficient communication bandwidth to keep processors busy. Power is a critical challenge for HPC, datacenters and consumer electronics. In HPC, a 1000x improvement in performance is needed with only a 10x increase in power by 2018. Moreover, datacenters require $7B just for cooling in the USA, which is projected to increase by 4x in the near future. Finally, consumer electronics require a 2x increase in performance with no increase in power every two years to remain competitive. In this talk, I will present my recent work on efficient data movement on and off chip, as well as efficient DRAM access. I will focus on collective memory transfers, which maximize DRAM performance and minimize power by guaranteeing in-order access patterns from a collection of processors to the memory. I will also present the channel reservation protocol, which eliminates congestion in system-wide networks caused by adversarial or unbalanced traffic in order to increase throughput and reduce latency for benign traffic, and therefore increase the utilization of costly network bandwidth. I will conclude this talk with an overview of related projects and ideas for the future.
Biography: George Michelogiannakis is currently a postdoctoral research fellow at the Lawrence Berkeley National Laboratory. He is part of the computer architecture laboratory which examines key computer architecture research challenges both on and off chip. He completed his PhD at Stanford University in 2012 with Prof. William J. Dally. His past work focuses on on-chip network with numerous contributions to flow control, congestion, allocation, and co-design with chip multiprocessors. His other work includes congestion control for system-wide networks, precision loss avoidance for system-wide reduction operations, and maximizing DRAM efficiency by taking advantage of advanced language constructs. George Michelogiannakis was the recipient of the Stanford Graduate Fellowship, and numerous other awards during his studies.
Host: Massoud Pedram
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
-
EE-EP Seminar - Lin Han
Mon, Mar 31, 2014 @ 04:00 PM - 05:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Lin Han, Biomedical Engineering, Yale University
Talk Title: Microtechnology Platforms to Interrogate Information Flow in Human Society and Single Cell Communication
Abstract: Human beings are living in a society full of information flow. The delivery of information and realization of communication are mostly based on electronic products which are assembled with displays. One important part of my research is electronic materials and devices for flexible organic light-emitting diodes (OLEDs) displays. A novel SiO2-silicone insulator material was invented, which was deposited by plasma enhanced chemical vapor deposition (PECVD) from environmentally friendly hexamethyl disiloxane (HMDSO) and O2 at room temperature. This hybrid is homogeneous and combines the electrical properties of thermal silicon oxide and the mechanical flexibility of polymer. This new hybrid is not only an effective encapsulation barrier to protect OLEDs, but also an excellent gate dielectric for amorphous silicon thin film transistors. As the gate dielectric, it enables transistors with greatly improved performance including output current, electrical stability, and flexibility. This SiO2-silicone hybrid is a promising material to solve the bottleneck of flexible OLEDs displays.
On the other hand the information flow in single cells is determined by the Central Dogma, also called a DNA-RNA-PROTEIN axis, which describes how genetic information is transcribed to messenger RNAs (mRNAs) and expressed to produce proteins that form the building blocks of a living cell and fulfill all biological functions. Despite recent advances in genomic technologies and next generation sequencing, it is still challenging to investigate the genetic information flow through multiple levels of the Central Dogma (e.g., from DNA to RNA) at a single-cell level. Microfluidics-enabled approaches allow for rapid separation of cytoplasmic and nuclear contents of a single cell followed by on-chip amplification of genomic DNA and messenger RNA. This platform is potentially an enabling tool to permit multiple genomic measurements performed on the same single cells and opens new opportunities to tackle a range of fundamental biological questions. It also helps addressing clinical challenges such as diagnosing intra-tumor heterogeneity and dissecting complex cellular immune responses via underlying cell-to-cell communication at single-cell levels.
Biography: Lin Han received her PhD in Electrical Engineering from Princeton University. She is currently a Postdoctoral Associate in Biomedical Engineering at Yale University. Her research mainly focuses on 1) Microfluidic platforms for single-cell genomics, epigenetics, transcriptomics and proteomics; 2) materials and devices for flexible electronics. Microfluidic platform enables us to break the bottleneck of traditional biology technique, and extract the multi-level information (genomic DNA, mRNA, protein secretion, and phenotype) simultaneously from single cells. As a result, we could be able to effectively investigate the dynamic evolutionary dynamics of cancer initiation, progression, evolution of resistance and response to therapy. By applying flexible electronics into biology and biomedical field, we can not only conduct scientific study, but also build functional systems to contribute to human beings health care.
Host: EE-Electrophysics
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski