Select a calendar:
Filter April Events by Event Type:
SUNMONTUEWEDTHUFRISAT
Events for April 01, 2024
-
ECE Seminar: Ultra-High-Throughput Computational Imaging: Towards A Trillion Voxels Per Second
Mon, Apr 01, 2024 @ 10:00 AM - 11:00 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Kevin C. Zhou, Postdoctoral Scholar | Schmidt Science Fellow | Department of EECS | UC Berkeley
Talk Title: Ultra-High-Throughput Computational Imaging: Towards A Trillion Voxels Per Second
Abstract: Traditional biomedical imaging techniques face throughput bottlenecks that limit our ability to study complex dynamic samples like cells, organoids, tissues, and organisms. In particular, hardware-only systems have inherent physical limitations preventing the simultaneous improvement of resolution, field of view, and frame rate. In this seminar, I propose that large-scale, machine learning-accelerated computational imaging will be the key to overcoming these throughput bottlenecks. I demonstrate a variety of examples from my research, ranging from resolution-enhanced, speckle-free tissue imaging with optical coherence refraction tomography, to camera array-based gigapixel microscopy and 4D fluorescence tomography of freely-behaving zebrafish and fruit flies. Critical to the computational scalability is the integration of physics-supervised deep learning into my reconstruction algorithms. Combined with scalable hardware designs, these high-performance computational imaging systems will continue the trend of my research towards ultra-high imaging throughputs, even approaching 1 trillion voxels per second, which will accelerate scientific discovery, big data generation, and tool development across a broad range of biomedical applications.
Biography: Kevin C. Zhou is a Schmidt Science Fellow and postdoctoral scholar at UC Berkeley, developing high-throughput computational imaging systems with Laura Waller and Hillel Adesnik. Before that, he received his PhD in biomedical engineering at Duke University, where he worked with Joseph Izatt, Warren Warren, Sina Farsiu, and Roarke Horstmeyer, and was supported by the NSF GRFP. He received his BS in biomedical engineering at Yale University, where he was supported by the Barry M. Goldwater Scholarship. Kevin's interdisciplinary research focuses on developing both the optical instrumentation and machine learning-driven algorithms for scalable, high-throughput computational optical imaging systems to advance discovery in biology and medicine.
Host: Dr. Justin Haldar, jhaldar@usc.edu
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Mayumi Thrasher
-
CSC/CommNetS-MHI Seminar: Prashant Mehta
Mon, Apr 01, 2024 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Prashant Mehta, Professor, Coordinated Science Laboratory | Department of Mechanical Science and Engineering | University of Illinois at Urbana-Champaign
Talk Title: Variational principles in control and the arrow of time
Series: CSC/CommNetS-MHI Seminar Series
Abstract: There is a certain magic in writing the variational form of the equations in physics and engineering. The most magical of these is Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on this and more appears in the Feb 2019 Issue of The New YorkerI describe a new variational (optimal control-type) formulation of the nonlinear filtering problem, an important feature of which is that the arrow of time reverses. The reversal of time brings about all sorts of paradoxes involving causality. Scenes from Christopher Nolan's sci-fi movie Tenet may be shown for entertainment and educational purposes.
Apart from movie snippets, the talk will also include technical content. Specifically, I argue that certain foundational aspects of Control Theory – duality between estimation and control – are less than well- understood for nonlinear stochastic systems (hidden Markov models), in part because of the issue of time reversal. Based on the optimal control formulation, I will also discuss some new results on the asymptotic stability of the nonlinear filter.
Biography:
Prashant Mehta is a Professor in the Coordinated Science Laboratory (CSL) and the Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign (UIUC). He received his Ph.D. in Applied Mathematics from Cornell University in 2004. He was the co-founder and the Chief Science Officer of the startup Rithmio whose gesture recognition technology was acquired by Bosch Sensortec in 2017. Prior to his academic appointment at UIUC in 2005, he worked at United Technologies Research Center (UTRC) where he co-invented the symmetry-breaking solution to
suppress combustion instabilities. This solution — which helped solve a sixty-year old open problem — has since become an industry standard and is widely deployed in jet engines and afterburners sold by Pratt and Whitney.Prashant Mehta received the Outstanding Achievement Award at UTRC for his contributions to modeling and control of combustion instabilities in jet-engines. His students have received the Best Student Paper Awards at the IEEE Conference on Decision and Control in 2007, 2009, and most recently in 2019; and have been finalists for these awards in 2010 and 2012. He serves as a member of the IEEE Control Systems Society (CSS) Awards Board and as an Associate Editor for the IEEE Transactions on Automatic Control (2019-present). He is a Fellow of IEEE.
Host: Dr. Ketan Savla
More Info: https://csc.usc.edu/seminars/2024Spring/mehta.html
More Information: 2024.04.01 CSC Seminar - Prashant Mehta.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - EEB 248
Audiences: Everyone Is Invited
Contact: Miki Arlen
Event Link: https://csc.usc.edu/seminars/2024Spring/mehta.html