Select a calendar:
Filter October Events by Event Type:
SUNMONTUEWEDTHUFRISAT
Events for October 26, 2022
-
Nano Science & Technology seminar - Shaloo Rakheja, Wednesday, Oct. 26th at 10:30am in EEB 248
Wed, Oct 26, 2022 @ 10:30 AM - 11:30 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Shaloo Rakheja, University of Illinois at Urbana-Champaign
Talk Title: Spin dynamics in antiferromagnets and its applications
Series: Nano Science & Technology
Abstract: Antiferromagnets (AFM) materials have ordered spin moments that alternate between individual atomic sites, which gives them a vanishing macroscopic magnetic signature and picosecond intrinsic timescale. Traditionally, AFM materials have played a secondary role to ferromagnets, which are used as active elements in commercial spintronic devices like magnetic sensors and non-volatile magnetic memory. However, it was recently suggested that spin transfer torque could in principle be used to manipulate the magnetic order in AFMs, leading to either stable AFM order precessions for their use as high-frequency oscillators, or switching of the AFM order for their use as magnetic memories.
My presentation will focus on the physics and modeling of electrically driven spin dynamics in thin films of two unique AFMs: Cr2O3, a single-phase magnetoelectric material that can be manipulated solely with electric fields and the Weyl semi-metal Mn3Sn in which spin torque can induce chiral spin rotations. Cr2O3-based ferromagnet-free random access memory has been experimentally demonstrated, while in the case of Mn3Sn, spin torque driven dynamics were found to induce chiral oscillations, from the megahertz to the terahertz frequency range. These materials can overcome the central challenge of manipulating and reading the AFM's order parameter via microelectronics compatible circuitry, thus allowing us to develop antiferromagnetic spintronics along a similar route as ferromagnetic spintronics.
I will discuss my group's recent work in developing new analytic models and numerical techniques to handle the complex domain dynamics across many length scales and time scales in AFM structures. I will use these models to explain recent experimental findings and bridge the gap between physics and applications development. I will conclude my talk by summarizing the limits, challenges, and opportunities of AFM spintronics for future technologies such as high-density, secure nonvolatile memory, compact narrowband terahertz sources, and spike generators.
Biography: Shaloo Rakheja is currently an Assistant Professor in the Electrical and Computer Engineering (ECE) department at the University of Illinois at Urbana-Champaign. She is currently leading the Center for Aggressive Scaling by Advanced Processes for Electronics and Photonics (ASAP) -“ an Industry-University Cooperative Research Center, expected to be launched as a Phase 1 Center by the NSF in 2022. Shaloo is an expert in physics-based modeling of nanoelectronic and magnetic devices for energy-efficient computing and communication. She has developed multi-scale models, spanning from first-principles calculations to circuit-compatible implementations, for enabling materials-to-circuits co-design for a wide range of technologically relevant applications.
Host: J Yang, H Wang, C Zhou, S Cronin, W Wu
More Info: https://usc.zoom.us/j/99956388667?pwd=UHZ2bEZSY0FuakM5dGFwcU1GcTB2QT09
More Information: Shaloo Rakheja_10262022.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
Event Link: https://usc.zoom.us/j/99956388667?pwd=UHZ2bEZSY0FuakM5dGFwcU1GcTB2QT09
-
Center of Autonomy and AI, Center for Cyber-Physical Systems and the Internet of Things, and Ming Hsieh Institute Seminar Series
Wed, Oct 26, 2022 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Samuel Coogan, Georgia Institute of Technology
Talk Title: Runtime Assurance for Safe Autonomy from Fast, In-the-Loop Reachability
Series: Center for Cyber-Physical Systems and Internet of Things
Abstract: In this talk, we show how efficient reachability methods enable runtime assurance (RTA) for safe autonomy. We focus on interconnected and/or high dimensional systems and we leverage reachability techniques enabled by mixed monotone systems theory. Mixed monotonicity decomposes a dynamical system's vector field into cooperative and competitive elements, resulting in a larger dimensional monotone system for which powerful results from monotone systems theory for, e.g., reachability and invariance are applicable. Notably, these methods offer two key properties: they enable reachable set over-approximations that can be computed very fast for, e.g., inclusion at runtime in feedback controllers, and they scale to high dimensional systems such as neural networks. We demonstrate how both of these appealing features enable RTA mechanisms with provable guarantees for learning-enabled control systems.
Biography: Samuel. Coogan is an associate professor and the Demetrius T. Paris Junior Professor at the Georgia Institute of Technology in the School of Electrical and Computer Engineering and the School of Civil and Environmental Engineering. Prior to joining Georgia Tech in 2017, he was an assistant professor at the University of California, Los Angeles from 2015 to 2017. His research is in the area of dynamical systems and autonomy and focuses on developing scalable tools for verification and control of networked, cyber-physical systems with an emphasis on transportation systems. He received a CAREER Award from the National Science Foundation in 2018, a Young Investigator Award from the Air Force Office of Scientific Research in 2019, and the Donald P Eckman Award from the American Automatic Control Council in 2020.
Host: Pierluigi Nuzzo, nuzzo@usc.edu
Webcast: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3QLocation: Online
WebCast Link: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3Q
Audiences: Everyone Is Invited
Contact: Talyia White