Events for November 21, 2024
-
ECE Seminar: Advanced Algorithms for Physical Design Automation Targeting 2D and 3D ICs
Thu, Nov 21, 2024 @ 10:00 AM - 11:00 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Sung Kyu Lim, Motorola Solutions Foundation Professor, Georgia Institute of Technology
Talk Title: Advanced Algorithms for Physical Design Automation Targeting 2D and 3D ICs
Abstract: In this talk, we present advanced algorithms, both conventional and AI-driven, developed to automate the manufacturing-ready layout generation of high-performance 2D and 3D integrated circuits. We utilize traditional algorithms such as graph search, mathematical programming, stochastic optimization, and dynamic programming to automate and refine the physical layouts of 2D and 3D ICs, focusing on power, performance, area (PPA), and electro-thermo-mechanical reliability. Our AI-driven methodologies include the use of generative AI, reinforcement learning enhanced by active learning, graph neural networks, and transformers. We demonstrate how these cutting-edge algorithms address complex challenges in physical design automation for 2D and 3D ICs.
Biography: Prof. Sung Kyu Lim earned his Ph.D. in Computer Science from UCLA in 2000. Since 2001, he has been a faculty member at the School of Electrical and Computer Engineering at the Georgia Institute of Technology. His research explores the architecture, design, and electronic design automation (EDA) of 2.5D and 3D integrated circuits, contributing to over 400 published papers. He received the Best Paper Awards from the IEEE Transactions on CAD in 2022 and the ACM Design Automation Conference in 2023. He is an IEEE Fellow and served as a program manager at DARPA's Microsystems Technology Office from 2022 to 2024.
Host: Dr. Peter Beerel, pabeerel@usc.edu
Webcast: https://usc.zoom.us/j/94963582840?pwd=Sf9z2kOLhLbBUl5Z7FBeOiGbbJI0Tx.1 (USC NetID login required to join seminar)Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
WebCast Link: https://usc.zoom.us/j/94963582840?pwd=Sf9z2kOLhLbBUl5Z7FBeOiGbbJI0Tx.1 (USC NetID login required to join seminar)
Audiences: Everyone Is Invited
Contact: Mayumi Thrasher
-
ECE Seminar: Daniel Neuhold
Thu, Nov 21, 2024 @ 10:00 AM - 11:00 AM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Daniel Neuhold, CEO, LoconIQ R&D | Klagenfurt, Austria
Talk Title: Entrepreneurial Road Towards a Robust 3D Tracking Solution with UWB
Abstract: As industries strive to enhance quality control and to ensure thorough traceability, the demand for sophisticated 3D tracking solutions drastically increased over the last years. LoconIQ stands out with a robust solution to empower new applications with high-precision and real-time 3D tracking. The company’s main innovations are a time-of-flight based ranging algorithm that allows for sub-centimeter distances measurements and a proprietary sensor fusion that integrates ultra-wideband (UWB) data and auxiliary sensors. The solution utilizes UWB signal characteristics and noise/outlier classification models of sensors to facilitate a weighted unscented Kalman Filter (UKF) approach for the localization. With these innovations, LoconIQ delivers a robust 3D tracking solution at a centimeter level accuracy with latencies of only a few ms. The talk will provide insights into the technology and provide real-life examples, outlining step-by-step improvements from a simple Kalman Filter based localization approach to the company’s current UKF with weighting and an advanced sensor fusion. The talk will, furthermore, provide some insights into the applications for such a technology and address the entrepreneurial journey from a university spin-off to a million-dollar company.
Biography: The talk will be given by Daniel Neuhold, who embarked on his Ph.D. journey focusing on wireless communication for aeronautical applications. More particularly, working with Airbus in a project to eliminates wires from commercial airplanes and Ariane carrier rockets. Aiming to substitute data cables with wireless communication to drastically reduce the aircraft’s weight. Daniel then pivoted to the utilization of the used ultra-wide band (UWB) communication to facilitate real-time and high-precision wireless ranging. With this research topic, Daniel performed a seven-months long research stay at the University of Southern California in 2018. After which, he pursued his entrepreneurial path and patented algorithms for precise and low-latency ranging. These efforts culminated in a first prototype solution, which demonstrated the capabilities of the developed technology to raise millions in funding, leading to the incorporate and scale-up of the company. LoconIQ now enables robust and high-precision 3D tracking with a small and battery-powered sensor device, that comes as a turnkey solution right out-of-the-box.
Host: Dr. Andreas F. Molisch
More Information: 2024.11.21 ECE Seminar - Daniel Neuhold.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - EEB 248
Audiences: Everyone Is Invited
Contact: Miki Arlen
-
Semiconductors & Microelectronics Technology Seminar - Azadeh Ansari, Thursday, Nov. 21st at 2:15pm in EEB 248
Thu, Nov 21, 2024 @ 02:15 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Azadeh Ansari, Georgia Institute of Technology
Talk Title: MEMS for Next Generation Radio Frequency and Biomedical Applications
Series: Semiconductors & Microelectronics Technology
Abstract: With the ever-increasing number of wireless devices, the frequency spectrum is getting more crowded and the need for signal filtering at emerging wireless bands is ever more critical. Recent advances in thickness downscaling of piezoelectric transducers have opened up new horizons for resonator operation at the millimeter wave frequencies; and enabled the use of nonlinearities in nanomechanical devices. I will present my group's work on developing novel Aluminum Scandium Nitride acoustic resonators, as well as nanomechanical frequency combs. In the second part of the talk, I will present my group's work on the fabrication, actuation and control of micro robotics systems. The recent advances in the nanofabrication and 3D printing at the nanoscale offer robotic solutions at exceedingly small scales that are instrumental for biomedical applications.
Biography: Azadeh Ansari is an Associate Professor in the School of Electrical and Computer Engineering at Georgia Tech. Her research focuses on resonant MEMS, acoustics, micromachined integrated sensors, and micro-robotics. She earned the M.S and Ph.D. degrees in Electrical Engineering from University of Michigan, Ann Arbor in 2013 and 2016. Prior to joining Georgia Tech, she was a postdoctoral scholar in the Physics Department at Caltech. She is the recipient of the 2023 IEEE Transducers Early Career Award, 2021 Roger Webb Outstanding Junior Faculty Award from Georgia Tech, 2020 NSF CAREER award, 2017 ProQuest Distinguished Dissertation Award from the University of Michigan, as well as 2016 University of Michigan Richard and Eleanor Towner Prize for outstanding Ph.D. research.
Host: J Yang, C Zhou, S Cronin, W Wu
More Information: Azadeh Ansari Flyer.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski