Events for March
-
Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute Seminar
Wed, Mar 03, 2021 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Gabor Orosz, Mechanical Engineering, University of Michigan
Talk Title: Safety Verification and Conflict Analysis for Connected Automated Vehicles
Series: Center for Cyber-Physical Systems and Internet of Things
Abstract: We demonstrate how wireless vehicle-to-everything (V2X) communication can be utilized to improve safety and prevent conflicts between road participants in mixed traffic scenarios where connected automated vehicles (CAVs) interact with connected human-driven vehicles (CHVs). The key idea is to find boundaries in state space that allow CAVs to make safe decisions far away from the conflict zone. This way CAVs are able to maintain safety while using mild control actions that benefit both the CAVs as well as the surrounding human-dominated traffic. Requirements for the quality of V2V communications are determined to ensure the performance of the decision making and control algorithms. The results are demonstrated experimentally using real automobiles and class-8 trucks.
Biography: Gabor Orosz received the M.Sc. degree in Engineering Physics from the Budapest University of Technology, Hungary, in 2002 and the Ph.D. degree in Engineering Mathematics from University of Bristol, UK, in 2006. He held postdoctoral positions at the University of Exeter, UK, and at the University of California, Santa Barbara. In 2010, he joined the University of Michigan, Ann Arbor where he is currently an Associate Professor in Mechanical Engineering and in Civil and Environmental Engineering. During 2017-2018 he was a Visiting Professor in Control and Dynamical Systems at the California Institute of Technology. His research interests include nonlinear dynamics and control, time delay systems, and machine learning with applications to connected and automated vehicles, traffic flow, and biological networks. He served as the Program Chair of the 2015 IFAC Workshop on Time Delay Systems and served as the General Chair of the 2019 IAVSD Workshop on Dynamics of Road Vehicles: Connected and Automated Vehicles. Since 2018 he has been serving as an editor for the journal Transportation Research Part C and since 2021 he has been serving as an editor for the IEEE Transactions on Control Systems Technology.
Host: Pierluigi Nuzzo, nuzzo@usc.edu
Webcast: https://usc.zoom.us/webinar/register/WN_Qk4-7AthThudso7LXs2OiALocation: Online
WebCast Link: https://usc.zoom.us/webinar/register/WN_Qk4-7AthThudso7LXs2OiA
Audiences: Everyone Is Invited
Posted By: Talyia White
-
Optomechanical Manipulation Enabled by Photonic Metasurfaces
Tue, Mar 09, 2021 @ 01:00 PM - 02:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Ognjen Ilic, Professor University of Minnesota
Talk Title: Optomechanical Manipulation Enabled by Photonic Metasurfaces
Series: Photonics Seminar
Host: Electrical and Computer Engineering: Wade Hsu, Mercedeh Khajavikhan, Michelle Povinelli, Constantine Sideris, and Wei Wu
More Info: https://usc.zoom.us/meeting/register/tJEqcuuprD4oE9ZVf6lwC_KIX9-3i55nMAMV
More Information: Photonics Seminar _Ognjen Ilic 3-9-21.png
Audiences: Everyone Is Invited
Posted By: Jennifer Ramos/Electrophysics
-
Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute Seminar
Wed, Mar 10, 2021 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Somil Bansal, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
Talk Title: Safe and Data-efficient Learning for Robotics
Series: Center for Cyber-Physical Systems and Internet of Things
Abstract: For successful integration of autonomous systems such as drones and self-driving cars in our day-to-day life, they must be able to quickly adapt to ever-changing environments, and actively reason about their safety and that of other users and autonomous systems around them. Even though control-theoretic approaches have been used for decades now for the control and safety analysis of autonomous systems, these approaches typically operate under the assumption of a known system dynamics model and the environment in which the system is operating. To overcome these challenges, machine learning approaches have been explored to operate autonomous systems intelligently and reliably in unpredictable environments based on prior data. However, learning techniques widely used today are extremely data inefficient, making it challenging to apply them to real-world physical systems. Moreover, they lack the necessary mathematical framework to provide guarantees on correctness, causing safety concerns as data-driven physical systems are integrated in our society.
In this talk, we will present a toolbox of methods combining robust optimal control with data-driven techniques inspired by machine learning, to enable performance improvement while maintaining safety. In particular, we design modular architectures that combine system dynamics models with modern learning-based perception approaches to solve challenging perception and control problems in a priori unknown environments in a data-efficient fashion. These approaches are demonstrated on a variety of ground robots navigating in unknown buildings around humans based only on onboard visual sensors. Next, we discuss how we can use optimal control methods not only for data-efficient learning, but also to monitor and recognize the learning system's failures, and to provide online corrective safe actions when necessary. This allows us to provide safety assurances for learning-enabled systems in unknown and human-centric environments, which has remained a challenge to date.
Biography: Somil Bansal completed his MS and PhD in the Electrical Engineering and Computer Sciences Department at the University of California, Berkeley in 2014 and 2020 respectively, and received his B.Tech. in Electrical Engineering from Indian Institute of Technology, Kanpur in 2012. He is currently spending a year as a research scientist at Waymo. In Fall 2021, he will join as an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Southern California, Los Angeles. His research interests include developing mathematical tools and algorithms for control and analysis of autonomous systems, with a focus on bridging learning and control-theoretic approaches for safety-critical autonomous systems. Somil has received several awards, most notably the Eli Jury award and the outstanding graduate student instructor award at UC Berkeley, and the academic excellence award at IIT Kanpur.
Host: Pierluigi Nuzzo, nuzzo@usc.edu
Webcast: https://usc.zoom.us/webinar/register/WN_Qk4-7AthThudso7LXs2OiALocation: Online
WebCast Link: https://usc.zoom.us/webinar/register/WN_Qk4-7AthThudso7LXs2OiA
Audiences: Everyone Is Invited
Posted By: Talyia White