Directional motor control

The recent review by Georgopoulos highlights the prodigious output of the small army of researchers who have taken to summarizing the activity of motor-cortical units as a population vector in coordinates of polar extrapersonal space. In order to treat this paradigm as a hypothesis, as claimed, the author must clarify what the hypothesis actually states.

Georgopoulos does provide some necessary conditions for any population vector to describe a set of reaching movements, but these actually hold equally for population vectors in myriad coordinate systems, including those based on intrinsic co-ordinates of the limb (for example, muscle and joint velocities) with no components related directly to the end point of the limb. Mussa-Ivaldi has already provided a formal statement of the necessary conditions and a general proof that the cortical activity that actually represents muscle-based co-ordinates can be used to construct accurate population vectors in extrapersonal space.

The proponents of the population-vector hypothesis are really inviting the reader to infer the truth of another, more salient sensory feedback for unobstructed reaching would be kinesthesia, which appears to be derived largely from muscle-spindle primary endings that have precisely the sorts of direction and velocity tuning that have been found in motor-cortical cells. These signals have an orderly relationship to hand movement because of the mechanical linkage imposed by the mechanical skeleton apparatus of the arm. More importantly, in a kinematically redundant system, the preferred direction in extrapersonal space of the individual signals might rotate with the origin and posture of the movement, whereas extrapersonal-space vectors based on the end point of the movement should not. Furthermore, there is at least the possibility that a co-ordinate frame constructed from intrinsic sensors might produce an orderly topographic map for motor cortex, which is conspicuously lacking in population-vector theories.

This is not to say that motor cortex computes in a reference frame that is defined by muscle spindles, but is rather to show how little can be said about thiscomputational problem by creating and displaying population vectors in any arbitrary co-ordinate frame. The ‘bottom-up’ theory of computation approach to the visual system is useful because the hypotheses that are derived from a theory about perception can be tested psychophysically. A ‘top-down’ theory of sensorimotor control must be integrated ‘bottom-up’ with musculoskeletal mechanics and spinal circuitry in order to understand whether any particular hypothesis actually offers a test of the theory or simply the inevitable consequences of trigonometry and newtonian mechanics.

Gerald E. Loeb
Ian E. Brown
Reply

The population-vector coding hypothesis (PVCH) has been stated previously, as well as in my TINS article; namely, that the weighted vector sum of directionally tuned cells yields a population vector that points in the direction of the movement. The procedure for deriving the population vector has also been clearly elucidated; that is (1) the direction space is sampled by movements in different directions while the discharge rate of a given cell is recorded; (2) the presence of directional tuning is determined using standard statistical methods; and (3) the population vector is calculated as the vector sum of single-cell vectors weighted by the change in cell discharge. The PVCH has been applied successfully to the coding of movement direction in several motor structures (see Ref. 2), extended to visual space and generalized to abstract spaces.

An important aspect of the PVCH is that no special assumptions are required as to how the directional tuning arises. The directional tuning is defined operationally by the procedures above and is, conceptually, at the same level as, for example, the orientation tuning in the striate cortex, the orientation, direction and speed tuning in the middle temporal visual area, and the directional saccadic tuning in fronto-eye fields; these are all experimental facts. In none of these cases has the concept of tuning been challenged on the basis of understanding (or lack thereof) of all the events leading from the retina to the visual-cortical circuitry, or from the frontal cortex to the eye muscles.

Loeb, Brown and Scott propose a specific hypothesis concerning the mechanism of directional tuning of single-cell activity; namely, that 'the activity of individual neurons and columns of the motor cortex is invariantly related to the direction of the movement of the end point of the limb, as represented in an extrinsic co-ordinate frame'. This is a straw hypothesis that the authors put up and then pull down themselves. Fortunately, it is their hypothesis, not mine, and obviously has nothing to do with the PVCH, which does not rely on any particular explanation as to how the directional tuning arises.

The success of the PVCH under conditions using an altered arm posture (see also Fig. 1 in Ref. 1) has demonstrated the robustness of this hypothesis. The computation of the population vector under these conditions not only does not dismiss but, on the contrary, takes explicitly into account the current state of affairs with respect to the preferred directions and discharge rates obtained under the new conditions to which the motor system has been adapted. The omission by the authors of the direct feed-forward corticomotorneuronal projections (see Ref. 8), as well as the lack of any discussion of the relationship of motor-cortical activity to isometric force, are understandable given the apparent novel hypothesis advanced by the authors that 'a co-ordinate frame constructed from intrinsic sensors might produce an orderly topological frame for motor cortex'. Indeed, since the authors treat the motor cortex as a sensory area, there is no room left for motor functions!

Finally, the potential role of muscle afferents in shaping motor-cortical discharge has been discussed in my TINS article. However, it is obvious that the motor cortex is not just a glorified spindle-discharge processor, and movement-related patterns of motor-cortical activity are essentially unchanged after deafferentation or section of the doral columns. If one takes into account the experimental findings reviewed elsewhere, the motor cortex emerges as a processor of complex, multidimensional, polynomial information in motor control, and our challenge is to elucidate this complex function rather than to force it to fit on an arbitrary prostatean bed.

Apostolos P. Georgopoulos
Brain Sciences Center, Veterans Affairs Medical Center, Dept of Physiology and Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.

References

The Flybrain Project

Editorial changes to our article 'The Flybrain Project' (Ref. 1) might have conveyed an impression that the authors were jointly responsible for Flybrain, an on-line atlas and database of the nervous system of Drosophila. The article was in fact intended merely as a report of the Göttingen workshop 'A Computerized Atlas of the Drosophila Brain', for which MH and KK were the organizers. Flybrain itself is co-ordinated by three principal investigators (Karl-Friedrich Fischbach, Kim Kaiser, and Nick Strausfeld; for further information see Ref. 2). We apologize if any misunderstandings have been caused. The omitted Flybrain accession numbers for the two figures in the TINS article are AAU00015 (Fig. 1) and AAU00030 (Fig. 2).

Martin Heisenberg
Theodor-Boveri-Institut für Biowissenschaften, Universität Würzburg, Lehrstrühl für Genetik, Am Hubland, D-97074, Würzburg, Germany.

Kim Kaiser
Laboratory of Genetics, University of Glasgow, Church St, Glasgow, UK G11 5J5.

References