Logo: University of Southern California

Events Calendar



Select a calendar:



Filter September Events by Event Type:



Conferences, Lectures, & Seminars
Events for September

  • Towards Accelerator-Rich Architectures and Systems

    Towards Accelerator-Rich Architectures and Systems

    Thu, Sep 07, 2017 @ 02:00 PM - 03:15 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Zhenman Fang, UCLA

    Talk Title: Towards Accelerator-Rich Architectures and Systems

    Abstract: With Intel's $16.7B acquisition of Altera and the deployment of FPGAs in major cloud service providers including Microsoft and Amazon, we are entering a new era of customized computing. In future architectures and systems, it is anticipated that there will be a sea of heterogeneous accelerators customized for important application domains, such as machine learning and personalized healthcare, to provide better performance and energy-efficiency. Many research problems are still open, such as how to efficiently integrate accelerators into future chips and commodity datacenters, and how to program such accelerator-rich architectures and systems.
    In this talk, I will first briefly explain how customized accelerators can achieve orders-of-magnitude performance improvement, based on our open-source simulator PARADE [ICCAD 2015, tutorials at ISCA 2015 & MICRO 2016]. Second, I will present our initial work on CPU-accelerator co-design, where we provide efficient and unified address translation support between CPU cores and accelerators [HPCA 2017 Best Paper Nominee]. It shows that a simple two-level TLB design for accelerators plus the host core MMU for accelerator page walking can be very efficient. On average, it achieves 7.6x speedup over the naïve IOMMU and there is only 6.4% performance gap to the ideal address translation. Finally, I will present the open-source Blaze system that provides programming and runtime support to enable easy and efficient FPGA accelerator deployment in datacenters [HotCloud 2016, ACM SOCC 2016]. Blaze abstracts accelerators-as-a-service, and bridges the gap between big data applications (e.g., Apache Spark programs) and emerging accelerators (e.g., FPGAs). By plugging a PCIe-based FPGA board into each CPU server, it can improve the system throughput by several folds for a range of applications.

    Biography: Dr. Zhenman Fang is a postdoc in the Computer Science Department, UCLA, working with Prof. Jason Cong and Prof. Glenn Reinman. He is a member of the NSF/Intel funded multi-university Center for Domain-Specific Computing (CDSC) and the SRC/DARPA funded multi-university Center for Future Architectures Research (C-FAR). Zhenman received his PhD in June 2014 from Fudan University, China and spent the last 15 months of his PhD program visiting University of Minnesota at Twin Cities. Zhenman's research lies at the boundary of heterogeneous and energy-efficient computer architectures, big data workloads and systems, and system-level design automation. He has published 10+ papers in top venues that span across computer architecture (HPCA, TACO, ICS), design automation (DAC, ICCAD, FCCM, IEEE Design & Test), and cloud computing (ACM SOCC). He received several awards, including a postdoc fellowship from UCLA Institute of Digital Research and Education, a best paper nominee of HPCA 2017, a best demo award at the C-FAR center annual review. More details can be found in his personal website: https://sites.google.com/site/fangzhenman/.

    Host: Xuehai Qian, x04459, xuehai.qian@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Mon, Sep 11, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Ramtin Pedarsani, University of California, Santa Barbara

    Talk Title: Robust Scheduling for Flexible Stochastic Networks

    Abstract: Modern large-scale stochastic systems face much demand and processing variability, and a key challenge is the design of efficient control and scheduling policies that are robust to these uncertainties. In this talk, I will present several robust scheduling policies for stochastic models with applications to emerging sectors such as data centers and intelligent transportation systems. In the first part, I present a robust scheduling policy with performance guarantee, for a novel stochastic model of job scheduling in data centers, where jobs are represented as directed acyclic graphs (DAG). I will then visit the long-standing open problem on the stability of of the longest-queue-first scheduling policy for multiclass open queueing networks, and resolve this problem for an important special case. In the second part of the talk, I focus on transportation networks. I develop the first exact analysis of fixed-time control for urban networks, and briefly mention a few opportunities and challenges in exploiting autonomous vehicles for enhancing network's performance.

    Biography: Ramtin Pedarsani is an assistant professor in the ECE department at UCSB. He obtained his Ph.D. in Electrical Engineering and Computer Sciences from UC Berkeley in 2015. He received his M.Sc. degree at EPFL in 2011 and his B.Sc. degree at the University of Tehran in 2009. His research interests include stochastic networks, information and coding theory, and transportation systems. He is the recipient of the best paper award in the IEEE International Conference on Communications (ICC) in 2014.

    Host: Insoon Yang, x.02351, insoonya@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute for Electrical Engineering Joint Seminar Series on Cyber-Physical Systems

    Wed, Sep 13, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Nikos Arechiga, Toyota Research Institute

    Talk Title: Scalable Automatic Reasoning in Model-Based Development

    Abstract: Recent progress in vehicle autonomy and robotics has increased the importance of system assurance, ranging from safety to security concerns. These assurances require systems that are able to reason about large and complex system designs, often containing large lookup tables as well as AI components.

    This talk presents a general-purpose technique that leverages machine learning to automatically learn logical antecedents and consequents to simplify a complex formal verification task.

    We also describe a specialization of this technique that has been used within Toyota to reason about software with large lookup tables, including a public benchmark.

    Finally, we look to the future and describe emerging research directions in automatic reasoning.

    Biography: Dr. Nikos Arechiga graduated with a Ph. D. in Electrical and Computer Engineering at Carnegie Mellon working with Professor Bruce Krogh. His graduate work touched on automatic inference of barrier certificates to simplify proofs of safety as well as techniques for provably-correct controller synthesis.

    He has been working at Toyota for two years, and has been involved with developing scalable reasoning techniques to address complex models with lookup tables, and is recently considering the problem of reasoning about AI components.


    Host: Paul Bogdan

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Estela Lopez


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • High-Level Program Optimizations for Data Analytics

    High-Level Program Optimizations for Data Analytics

    Thu, Sep 14, 2017 @ 02:00 PM - 03:15 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Yufei Ding, University of California at Santa Barbara

    Talk Title: High-Level Program Optimizations for Data Analytics

    Abstract: Many modern applications, especially those data analytics, often spend a large number of cycles on unnecessary computations. To find a document most similar to a query document, for instance, these applications typically would need to examine hundreds of thousands of other documents (that are not the most similar ones) in the dataset. Such redundant computations have been hidden in the useful instructions of the applications and are elusive for traditional compiler-based code optimizations. My work harnesses these hidden but significant optimization opportunities by raising the level of program optimizations from implementations to algorithms, and from instructions to formulas.

    Biography:

    Yufei Ding will soon join the department of Computer Science, University of California at Santa Barbara as an assistant professor. She received her Ph.D. in the Computer Science from North Carolina State University, and B.S. and M.S. in Physics from University of Science and Technology of China and The College of William and Mary respectively. In 2012, she started her Ph.D. study in Computer Science. Her research interest resides at the intersection of Compiler Technology and (Big) Data Analytics, with a focus on enabling HighI-Level Program Optimizations for data analytics and other data-intensive applications. Yufei has been actively publishing in major venues in both computer systems and data analytics areas, such as ASPLOS, PLDI, OOPSLA, VLDB, ICDE, and ICML. She was the receipt of NCSU Computer Science Outstanding Research Award in 2016.


    Host: Xuehai Qian, x04459, xuehai.qian@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Internet of Skills-Enabled by 5G Decoupled Uplink & Downlink

    Internet of Skills-Enabled by 5G Decoupled Uplink & Downlink

    Fri, Sep 15, 2017 @ 11:00 AM - 12:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Mischa Dohler, King's College London, UK

    Talk Title: Internet of Skills-Enabled by 5G Decoupled Uplink & Downlink

    Abstract: With the emergence of an ultra-responsive and reliable 5G 'Tactile Internet,' advanced techniques in robotics and artificial intelligence, we advocate for the emergence of an 'Internet of Skills' which allows the "transmission of labor" globally. It will invoke an important shift from content-delivery to skillset-delivery networks, where engineers would service cars or surgeons performing critical operations anywhere on the planet. For this to work, however, we require some fundamental changes to wireless communications systems. This presentation will look at the disruptive technology approaches in wireless 5G, notably the impact of decoupling up and downlinks; as well as the impact it has on different industry verticals.


    Biography: Mischa Dohler is full Professor in Wireless Communications at King's College London, driving cross-disciplinary research and innovation in technology, sciences and arts. He is the Director of the Centre for Telecommunications Research, co-founder of the pioneering smart city company Worldsensing, Fellow of the IEEE, the Royal Academy of Engineering and the Royal Society of Arts (RSA), and a Distinguished Member of Harvard Square Leaders Excellence.

    He is a frequent keynote, panel and tutorial speaker, and has received numerous awards. He has pioneered several research fields, contributed to numerous wireless broadband, IoT/M2M and cyber security standards, holds a dozen patents, organized and chaired numerous conferences, was the Editor-in-Chief of two journals, has more than 200 highly-cited publications, and authored several books.

    He acts as policy, technology and entrepreneurship adviser, examples being Richard Branson's Carbon War Room, former Minister David Willetts' 8 Great Technology Fund, UK Regulator Ofcom, UK Ministries, No 10, EPSRC ICT Strategy Advisory Team, European Commission, Tech London Advocate, ISO Smart City working group, and various start-ups.

    He is also an entrepreneur; composer & pianist with 5 albums on iTunes and an artist-verified Spotify account; as well as fluent in 6 languages. He has talked twice at TEDx. He had coverage by national and international TV & radio, and his contributions have featured on the BBC, the Wall Street Journal and many others.

    Host: Urbashi Mitra, ubli@usc.edu, EEB 536, x04667

    Location: 248

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Ming Hsieh Institute Seminar Series on Integrated Systems

    Fri, Sep 15, 2017 @ 01:30 PM - 03:30 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Dr. Vesna Radisic, Principle Scientist, Northrop Grumman

    Talk Title: Engineered and Full 3D RF Materials

    Host: Profs. Hossein Hashemi, Mike Chen, Mahta Moghaddam, and Dina El-Damak

    More Information: MHI Seminar Series IS -Vesna Radisic.pdf

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Jenny Lin


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Mon, Sep 18, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Andrzej Banaszuk, Andrew Sparks, and Fu Lin, United Technologies Research Center

    Talk Title: Systems and Control Research at United Technologies Research Center

    Abstract: This presentation will give a broad overview of research at UTRC's Systems Department, with particular focus on the areas of autonomous and intelligent systems, robotics, and control of complex systems. The research is conducted by a diverse team of researchers in dynamical systems, advanced control, applied mathematics, and human factors. Autonomous and intelligent systems research for aerial and ground robotics includes intelligent system architecture, human-machine systems, perception, collaborative motion planning with dynamic collision avoidance, manipulation, and formal verification. Research for large-scale, complex, and interconnected systems includes systematic methods to functionally decompose complex, interconnected systems to inform control architecture as well as approaches to sparse and distributed control. The presentation will conclude with a discussion of existing and future career and internship opportunities in the broad area of autonomous and intelligent systems, controls, and robotics.

    Biography: http://csc.usc.edu/seminars/2017Fall/banaszuk_sparks_lin.html

    Host: Mihailo Jovanovic, mihailo@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute for Electrical Engineering Joint Seminar Series on Cyber-Physical Systems

    Wed, Sep 20, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: BaekGyu Kim, Toyota InfoTechnology Center

    Talk Title: Test Specification and Generation for Connected and Autonomous Vehicle in Virtual Road Environment

    Abstract: The trend of connected / autonomous features adds significant complexity to the traditional automotive systems. In order to improve driving safety and comfort, vehicles are expected to drive autonomously and/or to communicate with each other and infrastructures. Such complexity makes engineers harder to test correctness, performance or effectiveness of those driving features in the physical environment. In this talk, we introduce a virtual test framework that utilizes existing visualization engines (e.g., Unity3D, Unreal Engine or Prescan). In this test framework, a system component is integrated with a virtual vehicle that can be tested under a wide range of virtual road environments to overcome the limitation of the physical testing. In order to build such test environments, we introduce a formal way to specify geometric and behavioral aspects of the road environments using SMT constraints (Satisfiability Modulo Theories) and timed automata. We also introduce a systematic way to generate those road environments from the formal specification based on several test criteria. Finally, we show the applicability of the proposed road environment generation method using adaptive cruise control (an example of autonomous features) and right-turn pedestrian warning system (an example of connected features).

    Biography: BaekGyu Kim earned B.S. and M.S. from Kyungpook National University in South Korea in 2007 and 2009, and earned Ph.D. in computer science from University of Pennsylvania in 2015. His research interest is applying various formal techniques to build safety-critical real-time embedded systems according to the model-based development paradigm. His doctoral dissertation topic was to design model-based implementation framework to assure the safety of infusion pump systems (medical device) as a part of Generic Infusion Pump project. After joining Toyota InfoTechnology Center, he started applying those techniques to analyze correctness and effectiveness of automotive systems.

    Host: Paul Bogdan

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Estela Lopez


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Dramatic Improvements in Pre-silicon and Post-silicon Validation of Digital Systems with Quick Error Detection and Formal Methods

    Dramatic Improvements in Pre-silicon and Post-silicon Validation of Digital Systems with Quick Error Detection and Formal Methods

    Thu, Sep 21, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Clark Barrett, Stanford University

    Talk Title: Dramatic Improvements in Pre-silicon and Post-silicon Validation of Digital Systems with Quick Error Detection and Formal Methods

    Abstract: Ensuring the correctness of integrated circuits (ICs) is essential for ensuring the correctness, safety and security of the many electronic systems we rely on. However, the effort required to validate ICs continues to be a major bottleneck in modern system design. To make matters worse, difficult bugs still escape into post-silicon and even production systems. I will present a set of results based on Quick Error Detection (QED). The standard QED technique is a testing technique which drastically reduces error detection latency, the time elapsed between the occurrence of an error caused by a bug and its manifestation as an observable failure. I will then present two new techniques, Symbolic QED and Electrical QED which use formal methods to dramatically extend the reach of QED: to automatically detect and localize both logic and electrical bugs during both pre- and post-silicon validation. Experimental results collected from several commercial designs as well as hardware platforms demonstrate the effectiveness and practicality of these methods. For example, for a 500 million transistor multi-core IC, Symbolic QED automatically detected and localized difficult logic design bugs (the kind that could escape traditional simulation-based pre-silicon verification) in only a few hours (~ 8 hours on average). This research was performed at Stanford University in collaboration with Prof. Subhasish Mitra, several graduate students, and several industrial collaborators.

    Biography: Clark Barrett is an associate professor (research) of computer science at Stanford University, with expertise in constraint solving and its applications to verification. His PhD dissertation introduced a novel approach to constraint solving now known as satisfiability modulo theories (SMT). His subsequent work on SMT has been recognized with a best paper award at DAC, an IBM Software Quality Innovation award, the Haifa Verification Conference award, and first-place honors at the SMT, CASC, and SyGuS competitions. He was also an early pioneer in the development of formal hardware verification: at Intel, he collaborated on a novel theorem prover used to verify key microprocessor properties; and at 0-in Design Automation (now part of Mentor Graphics), he helped build one of the first industrially successful assertion-based verification tool-sets for hardware.

    Host: Pierluigi Nuzzo, x09079, nuzzo@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute for Electrical Engineering Joint Seminar Series on Cyber-Physical Systems

    Thu, Sep 21, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Hong-Linh Truong, Priv.Doz and an Assistant Professor, TU Wien (Vienna University of Technology), Austria

    Talk Title: Managing and Testing Ensembles of IoT, Network functions, and Clouds

    Abstract: By leveraging virtualization and pay-per-use models, we believe that eventually applications will easily acquire IoT, network functions, and cloud services together to establish a virtual, unified resource ensemble across various subsystems from different IoT, network and cloud providers. But this will require us to research and develop various programming and management utilities. In this talk, we will first discuss the necessity and feasibility of application-level resource slice provisioning. We will overview our SINC - Slicing IoT, Network functions, and Clouds - as an approach for provisioning resource slices of end-to-end IoT, network functions, and cloud capabilities for novel requirements from a wide range of IoT/CPS applications. We will present several works on service engineering analytics for SINC, including harmonizing IoT, network functions, and cloud resources, supporting end-to-end monitoring and analytics, and testing uncertainties.

    Some links to related tools:
    http://rdsea.github.io/
    http://sincconcept.github.io/
    http://sincconcept.github.io/HINC/
    https://github.com/tuwiendsg/COMOT4U/
    http://tuwiendsg.github.io/iCOMOT/


    Biography: Hong-Linh Truong is currently a Priv.Doz and an assistant professor for Service Engineering Analytics at TU Wien (Vienna University of Technology), Austria. He received an engineer degree from the Bach Khoa University (HoChiMinh City University of Technology), Vietnam, in 1998, a PhD degree, in 2005, and a Habilitation, in 2013, both from TU Wien, Austria; all in computer science and engineering. His main research interest focuses Systems, Software, Data and Service Engineering Analytics by developing novel techniques and tools for monitoring, analyzing, and optimizing functions, performance, data quality, elasticity, and uncertainties associated with systems, software, data and services. His research has been applied to: Monitoring, Analysis and Optimization Techniques for Programs, Data and Systems; Parallel, Grid and Cloud Computing, and IoT; Data Service Models and Analytics; Socio-technical Services Engineering; and Elastic Computing. Furthermore, he is interested in (free) ICT solutions for (under) developing countries. He had delivered several invited talks and he published more than 180 refereed papers in books, conferences/workshops and journals. He (co)receives an outstanding paper award, seven best paper awards, one best paper run-up award, and one best poster award. Contact him at truong@dsg.tuwien.ac.at (http://dsg.tuwien.ac.at/staff/truong).

    Host: Bhaskar Krishnamachari and Paul Bogdan

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Estela Lopez


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomograph

    Fri, Sep 22, 2017 @ 10:00 AM - 11:00 AM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Zeeshan Nadir, Electrical and Computer Engineering, Purdue University

    Talk Title: A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomography

    Abstract: Many imaging and sensing problems in the fields of medical imaging, computer vision, machine learning, communications and signal processing etc. can be posed as inverse problems. Broadly, an inverse problem consists of recovering some underlying signal of interest that leads to a directly observable measurement dataset where the measurement dataset may be corrupted by noise. In the presence of sufficient quantity of good quality measurement dataset, the inversion problem can often be solved by direct methods often involving closed form inverse formulas like filtered back projection. However, when the measurement data contains noise or is extremely sparse, then such conventional techniques do not work. Tunable Diode Laser Absorption Tomography (TDLAT) is such an ill-posed nonlinear inverse problem where 2D concentration and temperature images are required to be reconstructed from a handful of projection measurements.

    Bayesian methods are a probabilistic approach to reconstruct signals by incorporating prior information about the signals in the form of a prior probability distribution. Typical 2D prior models like Markov Random Field enforce local smoothness on the images by penalizing differences between neighboring pixels. However, the major limitation of such prior models is that they cannot express non-homogeneous and non-Gaussian characteristics of the images and therefore cannot model the long-range correlations between image pixels. In this presentation, I shall present a Gaussian Mixture Model as a prior distribution which can be trained with a few training examples. In order to show the utility of this approach, I shall apply it to Tunable Diode Laser Absorption Tomography problem. I shall formulate the reconstruction problem as a Maximum-aposteriori estimation problem. I shall present an efficient multigrid algorithm to perform the resulting optimization. The results using simulated datasets show that the proposed approach can reduce reconstruction error while also resulting in a computationally efficient algorithm.

    Biography: Zeeshan Nadir is a Ph.D. candidate in the school of Electrical and Computer Engineering, Purdue University, West Lafayette, IN. In Summer 2016, he was an intern at MathWorks, Inc., Natick, MA, where he worked on MATLAB coder package. He developed a new functionality in MATLAB Coder which has been incorporated in MATLAB R2017a release. His research interests include statistical signal processing, inverse problems, computational imaging, machine learning and computer vision.



    Host: Hosted by Prof. Richard Leahy

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Talyia White


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • MHI Pioneer Series

    Mon, Sep 25, 2017 @ 03:00 AM - 05:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Andrew Viterbi, University of Southern California Trustee, Presidential Chair, and Professor of Electrical Engineering

    Talk Title: "It was the worst of times, it was the best of times." (with apologies to Mr. Dickens)

    Series: MHI Pioneer Series

    Abstract: The last two thirds of the 20th Century was a period of tremendous upheaval and progress, social, political and especially technological. This was the period during which I pursued two careers which were tightly intertwined. Curiously both were also influenced by our nation's most threatening competitor, Russia.

    The first was my academic career and the second my entrepreneurial career, both of which covered over thirty years, with considerable overlap. Though unrecognized at the time, my academic research had roots in the work of the Russian mathematician Andrei Markov, while with full recognition, my entrepreneurial career was launched and initially supported by our Defense research efforts to counter the Soviet threat.

    From 1957, when I arrived at Caltech's JPL just before the launch of Sputnik, until 2000 when I retired from Qualcomm, I was involved in furthering the knowledge, understanding and implementation of wireless digital communication, first for space and ultimately for cellular networks. My academic achievements, which have given me the most satisfaction, were primarily in the fields of synchronization and of error-suppressing coding. My entrepreneurial efforts were in support of the founding of two digital communication companies, Linkabit and Qualcomm, whose technologists achieved important breakthroughs through the practical realization of communication theory principles. Among these were the first Viterbi decoder now ubiquitous in digital wireless handsets, the first fully digitally implemented satellite modem, the first mobile satellite terrestrial network and the first spread spectrum digital cellular networks, which enabled the rise of a myriad of applications.
    In the new millennium, to prevent boredom and counter aging, my time has been devoted partly to activities on corporate boards of startup companies in digital communication, data storage and their numerous applications. My Memoir, "Reflections of an Educator, Researcher and Entrepreneur," was published recently.


    Host: Ming Hsieh Institute

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Cathy Huang


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Mon, Sep 25, 2017 @ 11:00 AM - 12:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Angelia Nedich, Arizona State University

    Talk Title: Fast Distributed Algorithms for Optimization and Resource Sharing in Networks

    Abstract: We will discuss the problems of distributed optimization over graphs. For the case of undirected graphs, we introduce a distributed algorithm, referred to as DIGing, which is a combination of a distributed inexact gradient method and a gradient-tracking mechanism. The DIGing algorithm uses doubly stochastic mixing matrices and employs fixed step-sizes and, yet, drives all agents' iterates to a common global minimizer. When the graphs are directed, in which case the implementation of doubly stochastic mixing matrices is unrealistic, we construct an algorithm that incorporates the push-sum protocol into the DIGing structure, thus obtaining Push-DIGing algorithm. Under the strong convexity assumption for the objective function, we prove that both algorithms converge at R-linear (geometric) rates, as long as the step-sizes do not exceed some upper bounds. We establish explicit convergence rate estimates for the convergence rates. When the graph is undirected, we show that the convergence rate of DIGing scales polynomially in the number of agents. We also provide some numerical experiments to demonstrate the efficacy of the proposed algorithms and to validate our theoretical findings. We then discuss the variants of these algorithms for resource allocation problems in graphs.

    Biography: Angelia Nedich holds a Ph.D. from Moscow State University, Moscow, Russia, in Computational Mathematics and Mathematical Physics (1994), and a Ph.D. from Massachusetts Institute of Technology, Cambridge, USA in Electrical and Computer Science Engineering (2002). She has worked as a senior engineer in BAE Systems North America, Advanced Information Technology Division at Burlington, MA. She is the recipient of an NSF CAREER Award 2007 in Operations Research for her work in distributed multi-agent optimization. She is a recipient (jointly with her co-authors) of the Best Paper Award at the Winter Simulation Conference 2013 and the Best Paper Award at the International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) 2015 (with co-authors). She has served as Associate Editor for IEEE Transactions on Automatic Control and Transactions of Control of Network Systems. She is currently serving on Editorial Board of SIAM Journal on Optimization and for INFORMS Operations Research. Her current interest is in large-scale optimization, games, control and information processing in networks.

    Host: Mihailo Jovanovic, mihailo@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Center for Systems and Control (CSC@USC) and Ming Hsieh Institute for Electrical Engineering

    Tue, Sep 26, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Evangelos Theodorou, Georgia Institute of Technology

    Talk Title: The Science of Autonomy: a "Happy" Symbiosis Among Learning, Control, and Physics

    Series: Fall 2017 Joint CSC@USC/CommNetS-MHI Seminar Series

    Abstract: In this talk, I will present an information theoretic approach to stochastic optimal control that has advantages over classical methodologies and theories for decision making under uncertainty. The main idea is that there are certain connections between optimality principles in control and information theoretic inequalities in statistical physics that allow us to solve hard decision making problems in robotics, autonomous systems and beyond. There are essentially two different points of view of the same "thing" and these two different points of view overlap for a fairly general class of dynamical systems that undergo stochastic effects. The information theoretic approach can also be used in a game theoretic setting for teams of robots performing cooperative or non-cooperative tasks. I will also present a holistic view to autonomy that collapses planning, perception and control into one computational engine, and ask questions related to how organization and structure relates to functionality and performance in "engineered" organisms. The last part of my talk includes computational frameworks for uncertainty representation and suggests ways to incorporate these representations within decision making and control.

    Biography: Evangelos A. Theodorou is an assistant professor with the Guggenheim School of aerospace engineering at Georgia Institute of Technology. He is also affiliated with the Institute of Robotics and Intelligent Machines. Evangelos Theodorou earned his Diploma in Electronic and Computer Engineering from the Technical University of Crete (TUC), Greece in 2001. He has also received a MSc in Production Engineering from TUC in 2003, a MSc in Computer Science and Engineering from University of Minnesota in spring of 2007 and a MSc in Electrical Engineering on dynamics and controls from the University of Southern California (USC) in Spring 2010. In May of 2011 he graduated with his PhD, in Computer Science at USC. After his PhD, he was a Postdoctoral Research Fellow with the department of computer science and engineering, University of Washington, Seattle. Evangelos Theodorou is the recipient of the King-Sun Fu best paper award of the IEEE Transactions on Robotics for the year 2012 and recipient of the best paper award in cognitive robotics in International Conference of Robotics and Automation 2011. He was also the finalist for the best paper award in International Conference of Humanoid Robotics in 2010 and International Conference of Robotics and Automation in 2017. His theoretical research spans the areas of stochastic optimal control theory, machine learning, information theory, and statistical physics. Applications involve learning, planning and control in autonomous, robotics and aerospace systems.

    Host: Mihailo Jovanovic, mihailo@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • A Book Talk about A MIND AT PLAY: HOW CLAUDE SHANNON INVENTED THE INFORMATION AGE

    A Book Talk about A MIND AT PLAY: HOW CLAUDE SHANNON INVENTED THE INFORMATION AGE

    Wed, Sep 27, 2017 @ 10:00 AM - 11:00 AM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Jimmy Soni, Author

    Talk Title: A Book Talk about A MIND AT PLAY: HOW CLAUDE SHANNON INVENTED THE INFORMATION AGE

    Abstract: Claude Shannon was a groundbreaking polymath, a brilliant tinkerer, and a digital pioneer. He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called "the Magna Carta of the Information Age." His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we'd be living in today - and gave mathematicians and engineers the tools to bring that world to pass.

    In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon's full story for the first time. It's the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It's the story of the origins of our digital world in the tunnels of MIT and the "idea factory" of Bell Labs, in the "scientists' war" with Nazi Germany, and in the work of Shannon's collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.

    And it's the story of Shannon's life as an often reclusive, always playful genius. With access to Shannon's family and friends, A Mind at Play brings this singular innovator and creative genius to life.

    Biography: Jimmy Soni was managing editor at The Huffington Post from January 2012-2014. Previously he had worked as a strategy consultant at McKinsey and Company, as well as a speech writer at the office of the Mayor of the District of Columbia. Soni has co-authored several pieces with fellow Duke graduate Rob Goodman; their work has been featured in Politico, The Huffington Post, Business Insider, AdWeek, and The Atlantic, among others.

    In 2012, Jimmy, published his first book a biography of Cato the Younger, titled Rome's Last Citizen: The Life and Legacy of Cato, Mortal Enemy of Caesar.

    Host: Center for Cyber-Physical Systems and the Internet of Things

    More Information: CCI_Shannon_BookTalk_September27_2017.pdf

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Mayumi Thrasher


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute for Electrical Engineering Joint Seminar Series on Cyber-Physical Systems

    Wed, Sep 27, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Eric Feron , Professor, Georgia Institute of Technology

    Talk Title: 20 Years of Aerobatic Flight with Autonomous Air Vehicles

    Abstract: The past 20 years have seen a remarkable evolution of the drone technology. Back in 1997, academia had to deal with heavy, bulky and expensive machines powered by cranky internal combustion engines. Unmanned vehicles today are a lot cheaper, lighter, and reliable, making them a lot more approachable by students and faculty alike. After tracing our research back to the late 1990s, this talk will introduce an aerobatic drone capable of producing reduced- or zero-gravity conditions at an affordable cost. The platform is still a prototype, but it captures most of the difficulties faced by the larger platform of our dreams. The controller design will be discussed, and a full non-linear maneuver stability analysis will be presented that mixes the concept of transverse dynamics with well-known concepts from robust control. This is joint work with John Hauser (U. Colorado, Boulder) and Pablo Afman (Georgia Tech).

    Biography: Eric Feron is a professor at Georgia Tech, where he directs the Decision and Control Laboratory. His basic training is in applied mathematics, computer science, and operations research. His interests include aerospace systems and robotics. Noteworthy achievements include an airport congestion control algorithm now used at many major airports (1999), the first aerobatic autonomous air vehicle (2001), the english translation of Étienne Bézout's General Theory of Algebraic Equations (2006), and a course on cyber-physical systems offered by Georgia Tech as part of its Online Master of Science in Computer Science (2017).

    Host: Paul Bogdan

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Estela Lopez


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Scaling Machine Learning Performance with Moore's Law

    Scaling Machine Learning Performance with Moore's Law

    Thu, Sep 28, 2017 @ 02:00 PM - 03:15 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Kunle Olukotun, Stanford University

    Talk Title: Scaling Machine Learning Performance with Moore's Law

    Abstract: The computational demands of machine learning (ML) requires energy efficient machine learning specific accelerators. This naturally results in heterogeneous computing platforms composed of CPUs and ML Accelerators. However, the staggering cost (the majority of the cost is for software development) of designing custom integrated circuits for many application domains makes it cost-prohibitive to design these accelerators. This situation calls for a new paradigm for designing accelerators that can provide energy-efficient ML-specific performance and easier software development. The key to this new paradigm is to enable application developers to optimize the underlying hardware to make it specific to their ML application needs. The new design paradigm consists of new application ML-specific programing languages, new machine learning algorithms, new compilation technology to target both existing (FPGAs) and new (Software Defined Hardware) reconfigurable architectures.

    Biography: Kunle Olukotun is the Cadence Design Systems Professor of Electrical Engineering and Computer Science at Stanford University. Olukotun is well known as a pioneer in multicore processor design and the leader of the Stanford Hydra chip multipocessor (CMP) research project. Olukotun founded Afara Websystems to develop high-throughput, low-power multicore processors for server systems. The Afara multicore processor, called Niagara, was acquired by Sun Microsystems. Niagara derived processors now power all Oracle SPARC-based servers. Olukotun currently directs the Stanford Pervasive Parallelism Lab (PPL), which seeks to proliferate the use of heterogeneous parallelism in all application areas using Domain Specific Languages (DSLs). Olukotun is a member of the Data Analytics for What's Next (DAWN) Lab which is developing infrastructure for usable machine learning. Olukotun is an ACM Fellow and IEEE Fellow for contributions to multiprocessors on a chip and multi-threaded processor design. Olukotun received his Ph.D. in Computer Engineering from The University of Michigan.

    Host: Xuehai Qian, x04459, xuehai.qian@usc.edu

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Ming Hsieh Institute Seminar Series on Integrated Systems

    Fri, Sep 29, 2017 @ 10:00 AM - 11:30 AM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Dr. Bodhisatwa Sadhu, Research Staff Member, IBM T.J. Watson Research Center

    Talk Title: mmWave Radio Design for 5G Base-stations and Mobile Handsets

    Host: Profs. Hossein Hashemi, Mike Chen, Mahta Moghaddam, and Dina El-Damak

    More Information: MHI Seminar Series IS -Bodhisatwa Sadhu.pdf

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Jenny Lin


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Munushian Seminar - Ming C. Wu, Friday, September 22nd at 2:00pm in EEB 132

    Fri, Sep 29, 2017 @ 02:00 PM - 03:30 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Ming C. Wu, University of California, Berkeley

    Talk Title: Silicon Photonic MEMS

    Abstract: Ming C. Wu is Nortel Distinguished Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He is also Co-Director of Berkeley Sensor and Actuator Center (BSAC) and Faculty Director of UC Berkeley Marvell Nanolab. Dr. Wu received his M.S. and Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 1988. He has been with AT&T Bell Laboratories, Murray Hill (1988-1992) and UCLA (1993 to 2004) before joining the faculty at Berkeley. His research interests include optoelectronics, nanophotonics, MEMS, and optofluidics. He has published 8 book chapters, over 500 papers in journals and conferences, and 25 issued U.S. patents.
    Prof. Wu is an IEEE Fellow, and a Packard Foundation Fellow (1992 - 1997). He received the 2007 Paul F. Forman Engineering Excellence Award, the 2017 C.E.K. Mees Medal from Optical Society of America, and the 2016 William Streifer Award from IEEE Photonics Society.

    Biography: Ming C. Wu is Nortel Distinguished Professor of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He is also Co-Director of Berkeley Sensor and Actuator Center (BSAC) and Faculty Director of UC Berkeley Marvell Nanolab. Dr. Wu received his M.S. and Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 1988. He has been with AT&T Bell Laboratories, Murray Hill (1988-1992) and UCLA (1993 to 2004) before joining the faculty at Berkeley. His research interests include optoelectronics, nanophotonics, MEMS, and optofluidics. He has published 8 book chapters, over 500 papers in journals and conferences, and 25 issued U.S. patents.
    Prof. Wu is an IEEE Fellow, and a Packard Foundation Fellow (1992 - 1997). He received the 2007 Paul F. Forman Engineering Excellence Award, the 2017 C.E.K. Mees Medal from Optical Society of America, and the 2016 William Streifer Award from IEEE Photonics Society.

    Host: EE-Electrophysics

    More Info: minghsiehee.usc.edu/about/lectures

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Marilyn Poplawski

    Event Link: minghsiehee.usc.edu/about/lectures


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Powering the Future of Imaging and Signal Processing with Data-Driven Systems

    Fri, Sep 29, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Saiprasad Ravishankar, Electrical Engineering & Computer Science Department, University of Michigan

    Talk Title: Powering the Future of Imaging and Signal Processing with Data-Driven Systems

    Series: Medical Imaging Seminar Series

    Abstract: The data-driven learning of signal models including dictionaries, sparsifying transforms, low-rank models, tensor and manifold models, etc., is of great interest in many applications. In this talk, I will present my research that developed efficient, scalable, and effective data-driven models and methodologies for signal processing and imaging. I will mainly discuss my work on transform learning. Various interesting structures for sparsifying transforms such as well-conditioning, double sparsity, union-of-transforms, incoherence, rotation invariance, etc., can be considered, which enable their efficient and effective learning and usage. Transform learning-driven approaches achieve promising results in applications such as image and video denoising, and X-ray computed tomography or magnetic resonance image (MRI) reconstruction from limited or corrupted data. The convergence properties of the algorithms will be discussed. I will also present recent work on efficient dictionary learning in combination with low-rank models, and demonstrate the usefulness of the resulting LASSI method for dynamic MRI. The efficiency and effectiveness of the methods proposed in my research may benefit a wide range of additional applications in imaging, computer vision, neuroscience, and other areas requiring data-driven parsimonious models. Finally, I will provide a brief overview of recent works on physics-driven deep training of image reconstruction algorithms, light field reconstruction from focal stacks, online data-driven estimation of dynamic data from streaming, limited measurements, etc.

    Biography: Saiprasad Ravishankar received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology Madras, in 2008. He received the M.S. and Ph.D. degrees in Electrical and Computer Engineering, in 2010 and 2014 respectively, from the University of Illinois at Urbana-Champaign, where he was an Adjunct Lecturer in the Department of Electrical and Computer Engineering during Spring 2015, and a Postdoctoral Research Associate at the Coordinated Science Laboratory until August, 2015. Since then, he has been a Research Fellow in the Electrical Engineering and Computer Science Department at the University of Michigan. His research interests include signal, image and video processing, signal modeling, data science, dictionary learning, biomedical and computational imaging, data-driven methods, inverse problems, compressed sensing, machine learning, and large-scale data processing.He has received multiple awards including the Sri Ramasarma V Kolluri Memorial Prize from IIT Madras and the IEEE Signal Processing Society Young Author Best Paper Award for his paper Learning Sparsifying Transforms published in IEEE Transactions on Signal Processing.


    Host: Professor Richard Leahy

    Location: Ronald Tutor Hall of Engineering (RTH) - 105

    Audiences: Everyone Is Invited

    Contact: Talyia White


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.

  • Center for Cyber-Physical Systems and Internet of Things and Ming Hsieh Institute for Electrical Engineering Joint Seminar Series on Cyber-Physical Systems

    Fri, Sep 29, 2017 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Yanzhi Wang , Syracuse University

    Talk Title: Towards the limits of energy efficiency and performance of deep learning systems

    Abstract: Deep learning systems have achieved unprecedented progresses in a number of fields such as computer vision, robotics, game playing, unmanned driving and aerial systems, and other AI-related fields. However, the rapidly expanding model size is posing a significant restriction on both the computation and weight storage, for both inference and training, and on both high-performance computing systems and low-power embedded system and IoT applications. In order to overcome these limitations, we propose a holistic framework of incorporating structured matrices into deep learning systems, and could achieve (i) simultaneous reduction on weight storage and computational complexities, (ii) simultaneous speedup of training and inference, and (iii) generality and fundamentality that can be adopted to both software and hardware implementations, different platforms, and different neural network types, sizes, and scalability.

    Besides algorithm-level achievements, our framework has (i) a solid theoretical foundation to prove that our approach will converge to the same "effectiveness" as deep learning without compression, and to demonstrate/prove that our approach approach/achieve the theoretical limitation of computation and storage of deep learning systems; (ii) platform-specific implementations and optimizations on smartphones, FPGAs, and ASIC circuits. We demonstrate that our smartphone-based implementation achieves the similar speed of GPU and existing ASIC implementations on the same application. Our FPGA-based implementations for deep learning systems and LSTM networks could achieve 11X+ energy efficiency improvement compared with the best state-of-the-arts, and even higher energy efficiency gain compared with IBM TrueNorth neurosynaptic processor. Our proposed framework can achieve 3.5 TOPS computation performance in FPGAs, and is the first to enable nano-second level recognition speed for image recognition tasks.


    Biography: Yanzhi Wang is currently an assistant professor in the Department of Electrical Engineering and Computer Science at Syracuse University, from August 2015. He has received his Ph.D. Degree in Computer Engineering from University of Southern California (USC) in 2014, under supervision of Prof. Massoud Pedram, and his B.S. Degree in Electronic Engineering from Tsinghua University in 2009.

    Dr. Wang's current research interests are the energy-efficient and high-performance implementations of deep learning and artificial intelligence systems, neuromorphic computing and new computing paradigms, and emerging deep learning algorithms/systems such as Bayesian neural networks, generative adversarial networks (GANs), and deep reinforcement learning. Besides, he works on the application of deep learning and machine intelligence in various mobile and IoT systems, medical systems, and UAVs, as well as the integration of security protection in deep learning systems. He also works on near-threshold computing for IoT devices and energy-efficient cyber-physical systems. His group works on both algorithms and actual implementations (FPGAs, circuit tapeouts, mobile and embedded systems, and UAVs).

    His work has been published in top venues in conferences and journals (e.g. ASPLOS, MICRO, ICML, DAC, ICCAD, DATE, ASP-DAC, ISLPED, INFOCOM, ICDCS, TComputer, TCAD, etc.), and has been cited for around 3,000 times according to Google Scholar. He has received four Best Paper or Top Paper Awards from major conferences including IEEE ICASSP (top 3 among all 2,000+ submissions), ISLPED, IEEE CLOUD, and ISVLSI. He has another six Best Paper Nominations and two Popular Papers in IEEE TCAD. His group is sponsored by the NSF, DARPA, IARPA, AFRL/AFOSR, Syracuse CASE Center, and industry sources.


    Host: Paul Bogdan

    Location: Corwin D. Denney Research Center (DRB) - 146

    Audiences: Everyone Is Invited

    Contact: Estela Lopez


    This event is open to all eligible individuals. USC Viterbi operates all of its activities consistent with the University's Notice of Non-Discrimination. Eligibility is not determined based on race, sex, ethnicity, sexual orientation, or any other prohibited factor.