Logo: University of Southern California

Events Calendar



Select a calendar:



Filter January Events by Event Type:



Events for January 14, 2013

  • Repeating EventMeet USC: Admission Presentation, Campus Tour, & Engineering Talk

    Mon, Jan 14, 2013

    Viterbi School of Engineering Undergraduate Admission

    Receptions & Special Events


    This half day program is designed for prospective freshmen and family members. Meet USC includes an information session on the University and the Admission process; a student led walking tour of campus and a meeting with us in the Viterbi School. Meet USC is designed to answer all of your questions about USC, the application process and financial aid. Reservations are required for Meet USC. This program occurs twice, once at 8:30 a.m. and again at 12:30 p.m. Please visit https://esdweb.esd.usc.edu/unresrsvp/MeetUSC.aspx to check availability and make an appointment. Be sure to list an Engineering major as your "intended major" on the webform!

    Location: Ronald Tutor Campus Center (TCC) - USC Admission Office

    Audiences: Everyone Is Invited

    View All Dates

    Contact: Viterbi Admission

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Seminars in Biomedical Engineering

    Mon, Jan 14, 2013 @ 12:30 PM - 01:50 PM

    Alfred E. Mann Department of Biomedical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Behrokh Khoshnevis, Ph.D., Professor, Industrial & Systems Engineering, Aerospace & Mechanical Engineering and Civil & Environmental Engineering, University of Southern California

    Talk Title: Creation of Biomedical Technology Through Inventive Thinking

    Host: David D'Argenio

    Location: Olin Hall of Engineering (OHE) - 122

    Audiences: Everyone Is Invited

    Contact: Mischalgrace Diasanta

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Assane Gueye: Quantifying Network Vulnerability to Attacks: A Game Theoretic Approach

    Mon, Jan 14, 2013 @ 01:30 PM - 03:00 PM

    Thomas Lord Department of Computer Science

    Conferences, Lectures, & Seminars


    Speaker: Assane Gueye, National Institute of Standards and Technology (NIST)

    Talk Title: Quantifying Network Vulnerability to Attacks: A Game Theoretic Approach

    Series: CS Colloquium

    Abstract: Designing network topologies that are robust and resilient to attacks has been and continues to be an important and challenging topic in the area of communication networks. One of the main difficulties resides in quantifying the robustness of a network in the presence of an intelligent attacker who might exploit the structure of the network topology to design harmful attacks. To capture the strategic nature of the interactions between a defender and an adversary, game theoretic models have been gaining a lot of interest in the study of the security of communication networks. In a recent line of research, network blocking games have been introduced and applied to the analysis of the robustness of network topologies. A network blocking game takes as input the communication model and the topology of a network and models the strategic interactions between an adversary and the network operator as a two-player game. The Nash equilibrium strategies are then used to predict the most likely attacker's actions and the attacker's Nash equilibrium payoff serves as a quantification of the vulnerability of the network.

    In this talk, I will present the notion of network blocking games and show how they can be used to derive network vulnerability metrics by using a series of examples of communication models. I will also show how these metrics can be used to design networks that are robust against attacks and/or strengthen the robustness of existing networks. I will also show how the metrics can be used to identify the most critical links in a network.

    This is joint work with Prof. Jean C. Walrand, Prof. Venkat Anantharam (UC Berkeley), Dr. Vladimir Marbukh (NIST), and Aron Lazska (Budapest University of Technology and Economics).


    Biography: Assane Gueye is a NIST-ARRA postdoctoral researcher in the Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST). He received his Ph.D. in Communication Engineering (March 2011) from the EECS department at the University of California, Berkeley and his MSE (September 2004) in Communication Systems from the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Assane's current research is on the application of game theoretic models to communication and cyber security. His past research includes bottleneck identification in complex network, performance evaluation of wireless cellular networks and sensor network deployment in unknown environment. Assane is currently working in join collaboration with NIST and the University of Maryland in College Park.

    Host: Milind Tambe

    Location: Ronald Tutor Hall of Engineering (RTH) - 306

    Audiences: Everyone Is Invited

    Contact: Assistant to CS chair

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Munushian Visiting Seminar Series

    Mon, Jan 14, 2013 @ 03:00 PM - 04:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Claire Gmachl, Princeton University

    Talk Title: “Mid-Infrared Quantum Cascade Lasers”

    Abstract: Quantum Cascade (QC) lasers are a rapidly evolving mid-infrared and THz, semiconductor laser technology based on intersubband transitions in multiple coupled quantum wells. The lasers’ strengths are their wavelength tailorability, high performance and fascinating design potential. We will first give a brief introduction into QC lasers followed by a discussion of several recent highlights, such as the quest for high performance QC lasers, especially high efficiency and single-mode operation, and the implementation of unconventional laser schemes. We will also discuss several applications, such as field campaigns of QC laser-based sensing, and our recent work in non-invasive glucose sensing. As an example for high-performance QC lasers, we examine lasers around 5 mm wavelength. First, we focus on thorough engineering of conventional QC lasers. The quest for high power and high efficiency QC lasers requires these lasers to have a low intrinsic threshold, a high characteristic temperature, a low voltage defect, and superior heat sinking. Next, we move on to unconventional designs, and a recent innovation in how the carrier injection into QC laser active regions is described; ultra-strong coupling between injectors and active regions are required, and the importance of interface roughness scattering is documented. The resultant QC lasers are nearly 50% power efficient at cryogenic temperatures. With respect to spectral innovations, a spectrally broadband QC laser based on a ‘continuum-to-continuum’ design will be presented, which differs from conventional, artificially spectrally broadened QC lasers in that almost no trade-off needs to be made between gain-bandwidth and laser performance with respect to laser threshold and output power. When this laser is put into an external cavity, a wide, continuous single-mode tuning range of well over 400 cm-1 is achieved. Next we explore opportunities for obtaining single-mode and tunable emission without the need of dispersive gratings, such as external dispersive cavities or gratings etched into the lasers. Folded cavities, “candy-cane“-shaped lasers, and Asymmetric Mach Zehnder cavities have all shown great potential for achieving single-mode emission at reduced fabrication complexity and cost. A recent example for the versatility of QC laser design is the development of QC lasers with two optical transitions in each active region instead of the usually just single photon emission. These lasers have potential for higher power efficiency and better performance especially at the long wavelength regime of l > 12 mm. Finally, we provide a quick overview on QC laser applications and show scattering of mid-infrared light from tissue components deeper in the skin potentially for non-invasive glucose sensing. The work presented is mostly supported by MIRTHE (NSF-ERC) with smaller contributions from other sources; the work has been conducted in collaboration with many valued colleagues in our own research group and across MIRTHE.

    Biography: Claire Gmachl received the Ph.D. degree (sub auspicies praesidentis) in electrical engineering from the Technical University of Vienna, Austria, in 1995. In 1996, she joined Bell Laboratories, Lucent Technologies, Murray Hill, NJ, to work on Quantum Cascade lasers and microcavity devices. In 2003, Gmachl joined Princeton University as an Associate Professor in the Department of Electrical Engineering and adjunct faculty to PRISM; since July 2007 she is Full Professor at Princeton University, and a Eugene Higgins Professor of Electrical Engineering since 2011. Her group’s research is focused on mid-infrared photonics, especially Quantum Cascade lasers and applications. Gmachl is the Director of MIRTHE, the NSF Engineering Research Center on Mid-InfraRed Technologies for Health and the Environment, established in 2006. Gmachl has authored and co-authored more than 250 publications, has given more than 100 presentations at conferences and seminars, and holds 26 patents. She has won an E-council/GEC Excellence in Teaching Award in 2012, and a Princeton University graduate mentoring award in 2009; she was an Associate Editor for Optics Express and a member of the IEEE/LEOS Board of Governors. Gmachl is a 2005 MacArthur Fellow and a member of several professional societies.

    Host: EE-Electrophysics

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Marilyn Poplawski

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File