Logo: University of Southern California

Events Calendar



Select a calendar:



Filter January Events by Event Type:



Events for January 26, 2011

  • Viterbi Career Expo

    Wed, Jan 26, 2011 @ 10:00 AM - 03:00 PM

    Viterbi School of Engineering Career Connections

    Receptions & Special Events


    The Viterbi Career Expo is free and open to all students in the USC Viterbi School of Engineering. Students do not need to register for this event, just show up! This casual, yet professional, environment allows students the opportunity to have brief conversations with recruiters about full-time employment, internships, and co-ops. Don't forget your resume!

    Location: E-Quad

    Audiences: All Viterbi Students

    Contact: RTH 218 Viterbi Career Services

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Bringing Network Coding Closer to Practice

    Wed, Jan 26, 2011 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Christina Fragouli, Swiss Federal Institute of Technology (EPFL), Switzerland

    Talk Title: Bringing Network Coding Closer to Practice

    Abstract: The paradigm of network coding allows intermediate nodes in a network to not only forward but also combine their incoming information flows. This modern application of coding to the theory and practice of communication networks raises novel and exciting research problems, and is promising to have an impact in diverse areas of network communications that include multicasting, network monitoring, resource sharing, network security, among other areas.

    However, one of the main challenges is to realize the benefits of network coding functionalities with implementable computational complexity. We illustrate through two examples how algorithmic and combinatorial tools can be applied to make progress on this challenging question.

    One of the challenges in the deployment of network coding is the fact that network nodes may need to perform operations over relatively large finite fields. We propose instead to use vector network coding, where nodes process and combine binary packets by multiplying them with binary coding matrices, as opposed to scalar coefficients over a field. We introduce an algebraic framework for vector network coding, and provide a polynomial time algorithm for the design of coding matrices, that aims to minimize the size of the employed matrices, and thus reduce the encoding complexity. Our algorithm reduces the problem of finding small size matrices to the problem of finding a small degree coprime factor of an algebraic polynomial, and leads to solutions not possible with using scalar network coding.

    We then consider a specific application. Our scenario is that a group of wireless nodes want to exchange a secret key, such that no eavesdropper can guess the key. Using network coding techniques, we develop a protocol that enables the group of nodes to agree on secret bits at a rate depending on the properties of the wireless network that interconnects them. Our protocol uses simple, polynomial-time operations and does not require any changes to the physical or MAC-layer of network devices. We formally prove and experimentally demonstrate that our protocol can generate information-theoretically secret keys in a realistic setting.


    Biography: Christina Fragouli is a tenure track Professor in the School of Computer and Communication Sciences, EPFL, Switzerland. She received the B.S. degree in Electrical Engineering from the National Technical University of Athens, Athens, Greece, in 1996, and the M.Sc. and Ph.D. degrees in electrical engineering from the University of California, Los Angeles, in 1998 and 2000, respectively. She has worked at the Information Sciences Center, AT&T Labs, Florham Park New Jersey, and the National University of Athens. She also visited Bell Laboratories, Murray Hill, NJ, and DIMACS, Rutgers University. From 2006 to 2007, she was an FNS Professor in the School of Computer and Communication Sciences, EPFL, Switzerland.

    Her research interests are in network information flow theory and algorithms, network coding, wireless sensor networks, and connections between communications, networking and computer science. She received the Fulbright Fellowship for her graduate studies, the Outstanding Ph.D. Student Award 2000-2001, UCLA, Electrical Engineering Department, the Zonta award 2008 in Switzerland, and the Young Investigator ERC grant award in 2009. She served as an editor for IEEE Communications Letters, and is currently serving as an editor for IEEE Transactions on Information Theory, IEEE Transactions on Communications, IEEE Transactions on Mobile Computing and Elsevier Computer Communications.

    Host: Giuseppe Caire, caire@usc.edu, EEB 528, x04683

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Gerrielyn Ramos

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • AME Department Seminar

    Wed, Jan 26, 2011 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Joanna M. Austin, Assistant Professor, Department of Aerospace Engineering, College of Engineering, University of Illinois at Urbana-Champaign, IL

    Talk Title: The Role of Thermochemistry in Hypersonic Shear Flows

    Abstract: In high enthalpy hypersonic flight, thermochemical relaxation times are typically comparable to flow residence times, leading to nonlinear coupling between chemical reactions, vibrational excitation, and fluid mechanics. The chemical species and internal energy of the gas depart significantly from equilibrium. Experimental data in hypervelocity flows are scarce, partly because creating high enthalpy conditions in ground test facilities is extremely challenging and flight tests are expensive.

    A new expansion tube facility capable of test gas Mach numbers from 3.0 to 7.4 has been built at Illinois and carefully characterized with experimental measurements and numerical simulations. Two canonical shear flows are being examined in the high enthalpy free stream: triple-point generated free shear layers and boundary layers flows. Initial experiments identified an opposing wedge configuration used to generate a Mach reflection with associated triple-point shear layers. The experimental configuration is chosen to give well-characterized inflow and boundary conditions. In addition, a Mach reflection results in a shear layer that separates a gas stream that has passed through a normal shock from a gas stream that has passed through two oblique shocks, leading to dramatically different temperatures and degree of dissociation across the shear layer. Key diagnostic tools include spectroscopic measurements confirming the presence of dissociated NO behind the Mach reflection, flow visualizations, and temperature measurements benchmarked against calculations using detailed and reduced chemical kinetic mechanisms.

    The experimental work is complemented by spatial linear stability analysis. This study is the first linear stability analysis of a hypersonic shear layer to include detailed modeling of molecular effects. An existing molecular-molecular energy transfer rate model is extended to higher collisional energies. Non-equilibrium model results are compared with calculations assuming equilibrium and frozen flow over a range of (frozen) convective Mach numbers from 0.341 to 1.707. Non-equilibrium effects appear in the creation of nitrous oxide due to dissociation. Dissociation and vibration transfer effects on the perturbation evolution remain closely correlated at all convective Mach numbers.

    Biography: Joanna Austin is an Assistant Professor in the Aerospace Engineering Department at the University of Illinois at Urbana-Champaign. She received B.E. (Mechanical and Space Engineering) and B.Sc. (Mathematics) degrees from the University of Queensland, Australia in 1996 and 1997, and M.S. and Ph.D. degrees from GALCIT at the California Institute of Technology in 1998 and 2003. She directs the Compressible Fluid Mechanics Laboratory at Illinois, where her research interests include hypervelocity flows, bubble collapse under dynamic loading, detonation, compressible geological flows, and experimental fluid mechanics. Honors and awards include the Richard Bruce Chapman award for distinguished research in hydrodynamics in the Engineering and Applied Sciences Division at Caltech, 2003, the Young Investigator Award from the Air Force Office of Scientific Research, 2007, and the National Science Foundation CAREER award in 2010.

    Host: Prof. V. Eliasson

    More Info: http://ame-www.usc.edu/seminars/1-26-11-austin.shtml

    Location: Seaver Science Library (SSL) - 150

    Audiences: Everyone Is Invited

    Contact: April Mundy

    Event Link: http://ame-www.usc.edu/seminars/1-26-11-austin.shtml

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Tie Dye with Alpha Omega Epsilon

    Wed, Jan 26, 2011 @ 07:00 PM - 08:00 PM

    Viterbi School of Engineering Student Organizations

    Student Activity


    Want to learn how to make tie dye clothing? Come spend the night with the sisters of Alpha Omega Epsilon! Learn how to make awesome tie dye patterns and about AOE. Shirts and snacks will be provided.

    Location: Grace Ford Salvatori Hall Of Letters, Arts & Sciences (GFS) - Lobby

    Audiences: Undergrad

    Contact: Alpha Omega Epsilon USC

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File