Select a calendar:
Filter February Events by Event Type:
Events for February 11, 2015
-
Meet USC: Admission Presentation, Campus Tour, & Engineering Talk
Wed, Feb 11, 2015
Viterbi School of Engineering Undergraduate Admission
Receptions & Special Events
This half day program is designed for prospective freshmen and family members. Meet USC includes an information session on the University and the Admission process, a student led walking tour of campus, and a meeting with us in the Viterbi School. During the engineering session we will discuss the curriculum, research opportunities, hands-on projects, entrepreneurial support programs, and other aspects of the engineering school. Meet USC is designed to answer all of your questions about USC, the application process, and financial aid.
Reservations are required for Meet USC. This program occurs twice, once at 8:30 a.m. and again at 12:30 p.m. Please make sure to check availability and register online for the session you wish to attend. Also, remember to list an Engineering major as your "intended major" on the webform!Location: Ronald Tutor Campus Center (TCC) - USC Admission Office
Audiences: Prospective Undergrads and Families
Contact: Viterbi Admission
-
Communications, Networks & Systems (CommNetS)
Wed, Feb 11, 2015 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Yutaka Hori, Caltech
Talk Title: A Control Theoretic Approach to Designing Biochemical Feedback Circuits
Series: CommNetS
Abstract: Recent technological advancements have enabled us to construct artificial biochemical networks, or biocircuits, that produce desired dynamic functions such as bistability, oscillations and logic gates by assembling DNA parts. Toward a systematic engineering of complex biological systems, model-based biocircuit design has been increasingly important in recent years. In this talk, we present a control theoretic framework for the systematic design and identification of biocircuits along with experimental results. In the first part of the talk, we introduce a general model representation of biocircuits and provide rigorous theoretical tools for the analysis of biochemical dynamics. The theoretical tools are demonstrated by experimentally designing biochemical oscillator circuits. In the latter half of the talk, we propose a set-based identification method for identifying a set of parameters that all explain time-series experimental data, using a convex relaxation approach. We show, using an existing biocircuit, that the identification method can systematically characterize the uncertainty of parameters. Finally, we discuss how we can integrate the set-based identification method into a robust biocircuit design problem.
Biography: Yutaka Hori received B.E., M.I.Sc.T. and Ph.D. degrees in information science and technology from the University of Tokyo in 2008, 2010 and 2013, respectively. In 2010-2011, he was a visiting student at University of California, Santa Barbara. He is currently a JSPS postdoctoral fellow with Prof. Richard Murray at California Institute of Technology. His research interests lie in feedback control theory of networked dynamical systems and synthetic biology. He is a recipient of Annual Conference Young Authorâs Award at ICROS-SICE International Joint Conference in 2009 and a Finalist of Best Student Paper Award at IEEE Multi-Conference on Systems and Control in 2010 and Best Paper Award at Asian Control Conference in 2011.
Host: Dr. Ashutosh Nayyar and the Ming Hsieh Institute
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Annie Yu
-
Aerospace and Mechanical Engineering Seminar Series
Wed, Feb 11, 2015 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Kevin K. Chen , Viterbi Fellow in the Department of Aerospace & Mechanical Engineering at the University of Southern California, Los Angeles, CA
Talk Title: Low Mach Number Simulation of Turbulent CombustionOptimal Actuator and Sensor Placement for Feedback Flow Control
Series: Aerospace and Mechanical Engineering Seminar Series
Abstract: Feedback control has an enormous potential to manipulate fluid flows in desirable ways. It may one day effect, for instance, a significant improvement in vehicle performance and efficiency. One fundamental question has remained unanswered, however: where should the feedback system's actuators and sensors be located in the flow? The state of the art is shockingly insufficient; the vast majority of flow control studies use trial and error, or otherwise flawed heuristics.
In this seminar, we will explore why some actuator and sensor placements are more effective than others. Specifically, we will examine the optimal control of the Ginzburg-Landau and Orr-Sommerfeld/Squire equations, using localized actuators and sensors. By implementing a novel algorithm for the gradient of a control performance measure with respect to actuator and sensor positions, we can iterate efficiently toward optimal positions in these fluid flow models. The control theoretical and physical interpretations of the optimal placements yield a set of heuristics that may help control designers predict effective actuator and sensor placements. In particular, we will discuss the respective pros and cons of heuristics based on fundamental control limitations, eigenmodes, sensitivity to spatially localized feedback, optimal growth, and impulse responses.
Biography: Kevin Chen is presently a Viterbi Postdoctoral Fellow at the University of Southern California, in the Aerospace and Mechanical Engineering department. He attended Caltech as an Axline Scholar, where he received a B.S. with Honor in Engineering and Applied Science, with a focus in Aeronautics, in 2009. At Caltech, he conducted research in experimental and computational fluid dynamics with Mory Gharib, Beverley McKeon, and Tim Colonius. He attended Princeton University as a Gordon Y. S. Wu fellow, where he received an M.A. and a Ph.D. in Mechanical and Aerospace Engineering in 2011 and 2014, respectively, under the advising of Clancy Rowley and Howard Stone. He has received support from the Barry M. Goldwater Scholarship, the DOD NDSEG and NSF GRFP fellowships, and awards from Caltech and Princeton University. Kevin's primary research interest is the development of feedback flow control, where fluid mechanics intersect with modern control theory, stability theory, dynamical systems, and computational methods.
Host: Paul Ronney
Location: Seaver Science Library (SSL) - 150
Audiences: Everyone Is Invited
Contact: Valerie Childress
-
Interviewing Strategies and Techniques - VCS
Wed, Feb 11, 2015 @ 05:00 PM - 06:00 PM
Viterbi School of Engineering Career Connections
Workshops & Infosessions
Discover tips on how to prepare for both technical and behavioral interviews, as well as the proper steps for follow-up!
Location: Ronald Tutor Hall of Engineering (RTH) - 115
Audiences: All Viterbi Students
Contact: RTH 218 Viterbi Career Services