Select a calendar:
Filter March Events by Event Type:
Events for March 27, 2024
-
Gas Turbine Engine Accident Investigation GTAI 24-2
Wed, Mar 27, 2024 @ 08:00 AM - 04:00 PM
Aviation Safety and Security Program
University Calendar
This specialized accident investigation course is directed to fixed-wing turbojet and turboprop as well as turbine-powered rotary-wing aircraft. The course examines specific turbine engine investigation methods and provides technical information related to material factors and metallurgical failure investigation. This is a fundamental accident investigation course. Individuals with many years of engine investigations may find this course too basic. It is assumed that the attendee has a basic understanding of jet engines.
Location: Century Boulevard Building (CBB) - 960
Audiences: Everyone Is Invited
Contact: Daniel Scalese
Event Link: https://avsafe.usc.edu/wconnect/CourseStatus.awp?&course=24AGTAI2
-
Helicopter Accident Investigation HAI 24-2
Wed, Mar 27, 2024 @ 08:00 AM - 04:00 PM
Aviation Safety and Security Program
University Calendar
The course examines the investigation of helicopter accidents to include processes used to determine the cause. The course includes interactive lectures, various case studies, examination of component wreckage in the classroom, and helicopter wreckage examination in the laboratory. The course includes an examination of helicopter rotor systems, controls, performance variables, flight hazards, and material characteristics involved in helicopter operations and accidents. Although Aircraft Accident Investigation (AAI) is not a prerequisite, it is assumed that the attendee has either completed AAI or has some previous experience in aircraft accident investigation.
Location: Century Boulevard Building (CBB) - 920
Audiences: Everyone Is Invited
Contact: Daniel Scalese
Event Link: https://avsafe.usc.edu/wconnect/CourseStatus.awp?&course=24AHAI2
-
EiS Communications Hub Drop-In Hours
Wed, Mar 27, 2024 @ 10:00 AM - 01:00 PM
Viterbi School of Engineering Student Affairs
Workshops & Infosessions
Viterbi Ph.D. students are invited to stop by the EiS Communications Hub for one-on-one instruction for their academic and professional communications tasks. All instruction is provided by Viterbi faculty at the Engineering in Society Program.
Location: Ronald Tutor Hall of Engineering (RTH) - 222A
Audiences: Viterbi Ph.D. Students
Contact: Helen Choi
Event Link: https://sites.google.com/usc.edu/eishub/home?authuser=0
-
EiS Communications Hub Drop-In Hours
Wed, Mar 27, 2024 @ 10:00 AM - 01:00 PM
Engineering in Society Program
Student Activity
Drop-in hours for writing and speaking support for Viterbi Ph.D. students
Location: Ronald Tutor Hall of Engineering (RTH) - 222
Audiences: Everyone Is Invited
Contact: Helen Choi
Event Link: https://sites.google.com/usc.edu/eishub/home
-
CS Colloquium: Paul Liang - Foundations of Multisensory Artificial Intelligence
Wed, Mar 27, 2024 @ 10:00 AM - 11:00 AM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Paul Liang, CMU
Talk Title: Foundations of Multisensory Artificial Intelligence
Abstract: Building multisensory AI systems that learn from multiple sensory inputs such as text, speech, video, real-world sensors, wearable devices, and medical data holds great promise for impact in many scientific areas with practical benefits, such as in supporting human health and well-being, enabling multimedia content processing, and enhancing real-world autonomous agents. In this talk, I will discuss my research on the machine learning principles of multisensory intelligence, as well as practical methods for building multisensory foundation models over many modalities and tasks. In the first half, I will present a theoretical framework formalizing how modalities interact with each other to give rise to new information for a task. These interactions are the basic building blocks in all multimodal problems, and their quantification enables users to understand their multimodal datasets and design principled approaches to learn these interactions. In the second part, I will present my work in cross-modal attention and multimodal transformer architectures that now underpin many of today’s multimodal foundation models. Finally, I will discuss our collaborative efforts in scaling AI to many modalities and tasks for real-world impact on mental health, cancer prognosis, and robot control. This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Paul Liang is a Ph.D. student in Machine Learning at CMU, advised by Louis-Philippe Morency and Ruslan Salakhutdinov. He studies the machine learning foundations of multisensory intelligence to design practical AI systems that integrate, learn from, and interact with a diverse range of real-world sensory modalities. His work has been applied in affective computing, mental health, pathology, and robotics. He is a recipient of the Siebel Scholars Award, Waibel Presidential Fellowship, Facebook PhD Fellowship, Center for ML and Health Fellowship, Rising Stars in Data Science, and 3 best paper/honorable mention awards at ICMI and NeurIPS workshops. Outside of research, he received the Alan J. Perlis Graduate Student Teaching Award for instructing courses on multimodal ML and advising students around the world in directed research.
Host: Willie Neiswanger / Xiang Ren
Location: Olin Hall of Engineering (OHE) - 132
Audiences: Everyone Is Invited
Contact: CS Faculty Affairs
-
Computer Science General Faculty Meeting
Wed, Mar 27, 2024 @ 12:00 PM - 02:00 PM
Thomas Lord Department of Computer Science
Receptions & Special Events
Bi-Weekly regular faculty meeting for invited full-time Computer Science faculty only. Event details emailed directly to attendees.
Location: Ronald Tutor Hall of Engineering (RTH) - 526
Audiences: Invited Faculty Only
Contact: Assistant to CS Chair
-
PhD Thesis Proposal- Xin Qin
Wed, Mar 27, 2024 @ 12:45 PM - 01:45 PM
Thomas Lord Department of Computer Science
Student Activity
PhD Thesis Proposal- Xin Qin
Title: Data-driven and Logic-based Analysis of Learning-enabled Cyber-Physical Systems
Committee: Jyotirmoy Deshmukh, Chao Wang, Souti Chattopadhyay, Yan Liu and Paul Bogdan
Abstract: Rigorous analysis of cyber-physical systems (CPS) is becoming increasingly important, especially for safety-critical applications that use learning-enabled components. In this proposal, we will discuss various pieces of a broad framework that enable scalable reasoning techniques tuned to modern software design practices in autonomous CPS applications. The proposal will center around three main pillars: (1) Statistical verification techniques to give probabilistic guarantees on system correctness; here, we treat the underlying CPS application as a black-box and use distribution-free and model-free techniques to provide probabilistic correctness guarantees. (2) Predictive monitoring techniques that use physics-based or data-driven models of the system to continuously monitor logic-based requirements of systems operating in highly uncertain environments; this allows us to design runtime mitigation approaches to take corrective actions before a safety violation can occur. (3) Robust testing for CPS using reinforcement learning. We train an agent to produce a policy to initiate unsafe behaviors in similar target systems without the need for retraining, thereby allowing for the elicitation of faulty behaviors across various systems. The proposal hopes to demonstrate the scalability of our approaches on various realistic models of autonomous systems.
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 349
Audiences: Everyone Is Invited
Contact: Xin Qin
-
CS Colloquium: Teodora Baluta - New Algorithmic Tools for Rigorous Machine Learning Security Analysis
Wed, Mar 27, 2024 @ 02:00 PM - 03:00 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Teodora Baluta, National University of Singapore
Talk Title: New Algorithmic Tools for Rigorous Machine Learning Security Analysis
Abstract: Machine learning security is an emerging area with many open questions lacking systematic analysis. In this talk, I will present three new algorithmic tools to address this gap: (1) algebraic proofs; (2) causal reasoning; and (3) sound statistical verification. Algebraic proofs provide the first conceptual mechanism to resolve intellectual property disputes over training data. I show that stochastic gradient descent, the de-facto training procedure for modern neural networks, is a collision-resistant computation under precise definitions. These results open up connections to lattices, which are mathematical tools used for cryptography presently. I will also briefly mention my efforts to analyze causes of empirical privacy attacks and defenses using causal models, and to devise statistical verification procedures with ‘probably approximately correct’ (PAC)-style soundness guarantees. This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Teodora Baluta is a Ph.D. candidate in Computer Science at the National University of Singapore. She enjoys working on security problems that are both algorithmic in nature and practically relevant. She is one of the EECS Rising Stars 2023, a Google PhD Fellow, a Dean’s Graduate Research Excellence Award recipient and a President’s Graduate Fellowship recipient at NUS. She interned at Google Brain working in the Learning for Code team. Her works are published in security (CCS, NDSS), programming languages/verification conferences (OOPSLA, SAT), and software engineering conferences (ICSE, ESEC/FSE). More details are available on her webpage: https://urldefense.com/v3/__https://teobaluta.github.io/__;!!LIr3w8kk_Xxm!pCgCXC327otABpiCTruPDSq7pyOXJEWhQ5X0UekIkZhAzt8Q0u0y5QtnemfzYURw7fop1LHm8tR_SY5JCA$ .
Host: Mukund Raghothaman
Location: Ronald Tutor Hall of Engineering (RTH) - 109
Audiences: Everyone Is Invited
Contact: CS Faculty Affairs
-
AME Seminar
Wed, Mar 27, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Shima Shahab, Virginia Tech
Talk Title: Ultrasound-Responsive Intelligent Material Systems
Abstract: Intelligent material systems, often known as smart materials, may adapt their behavior in response to changes in external stimuli. The use of smart materials in numerous sensitive applications has increased the demand for a remote, wireless, efficient, and physiologically safe stimulus. These needs will be addressed in this presentation by using Focused Ultrasound (FUS) as an external trigger. To achieve the desired response of an ultrasound-responsive smart structure, FUS has the unique property of maintaining both spatial and temporal control and propagating over large distances with low losses. Shape Memory Polymers (SMPs) and piezoelectric (PZT) materials will be discussed as ultrasound-responsive smart materials. First, we will look into the acoustic-thermoelastic dynamics of ultrasound-stimulated SMPs in order to develop next-generation delivery, sensing, and morphing devices. When activated by FUS, SMPs can be manipulated into any temporary shape and then recover to their stress-free permanent shape. FUS is a promising stimulus with the unique and superior capacity to cause localized heating, activate various intermediate shapes, and enable noninvasive shape recovery in polymers. Second, we'll go through the fundamentals of PZT-based Ultrasonic Power Transfer (UPT) systems. UPT along with acoustic holograms is a new technique that relies on piezoelectric receivers to receive FU in selective patterns. UPT is used to wirelessly charge modest to high-power electronics in biomedical implants and enclosed electronic devices working in unmanned aerial and undersea vehicles. Finally, holographic lenses, also referred to as acoustic holograms, will be discussed. These lenses are utilized to generate complicated FUS fields. They save the desired wavefront's phase profile, which is utilized to reconstruct the acoustic pressure field when illuminated by a single acoustic source. Because of its robustness, simplicity, and low cost, the use of holographic lenses for sound modification in medical applications has attracted interest in recent years. Ultrasound-guided thermal therapy is one such application that use the absorbed acoustic field to generate a therapeutic effect within the human body.
Biography: Shima Shahab is Mary V. Jones Faculty Fellow and an Associate Professor in the Department of Mechanical Engineering at Virginia Tech. She completed her Ph.D. and M.S. in Mechanical Engineering at Georgia Institute of Technology. Dr. Shahab is the Director of Multiphysics Intelligent and Dynamical Systems (MInDS) laboratory and an Associate Editor of Journal of Intelligent Material Systems and Structures (JIMSS). Her theoretical and experimental research program focuses on the intersection of smart materials and dynamical systems for various interdisciplinary applications such as contactless ultrasound power transfer, ultrasound responsive polymer-based systems, ultrasound atomization, and acoustic holograms. Dr. Shahab has served as principal investigator on research grants from the National Science Foundation, Alpha Foundation, Oakridge National Laboratory, and Ford Motor Company. In addition to a recent NSF CAREER award, Dr. Shahab is the recipient of ASME Gary Anderson Early Achievement Award. The award recognizes a young researcher on the rise who has already made significant contributions to the field of Adaptive Structures and Material Systems. More at https://me.vt.edu/people/faculty/shahab-shima.html
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/
-
Alumni Career Panel & Mixer
Wed, Mar 27, 2024 @ 05:00 PM - 06:30 PM
Viterbi School of Engineering Career Connections
Receptions & Special Events
Alumni Career Panel & Mixer connects students with Viterbi Alumni and industry professionals. Distinguished Viterbi Alumni will share their career journey, activities they were involved with on-campus, and advice on how they landed their internships & full-time jobs. You will also be able to network with them after the panel and obtain job search tips and suggestions.
Location: Michelson Center for Convergent Bioscience (MCB) -
Audiences: All Viterbi BS, MS Students
Contact: RTH 218 Viterbi Career Connections
-
Min Family Challenge Semi Finals
Wed, Mar 27, 2024 @ 06:00 PM - 08:00 PM
Viterbi Technology Innovation and Entrepreneurship
Receptions & Special Events
Come and hear from this years Min Family Challenge teams as they pitch to a panel of judges and compete for 50k towards their social impact venture. Top teams will advance to the Min Family Challenge Finals.
Location: Sign into EngageSC to View Location
Audiences: Everyone Is Invited
Contact: Johannah Murray
Event Link: https://engage.usc.edu/Viterbitie/rsvp?id=396441