Logo: University of Southern California

Events Calendar



Select a calendar:



Filter April Events by Event Type:



Events for April 06, 2022

  • Repeating EventCS Undergraduate Web Registration Live Chat Assistance

    Wed, Apr 06, 2022 @ 09:00 AM - 09:30 AM

    Computer Science

    Student Activity


    If you are a CS undergraduate with a web registration permit time of 9am today and are having difficulty with web registration, the advisement staff will be available from 9:00am - 9:30am to help troubleshoot your registration questions and issues. Chat with us at https://www.cs.usc.edu/chat/

    Audiences: Undergrad

    View All Dates

    Contact: USC Computer Science

    OutlookiCal
  • Center of Autonomy and AI, Center for Cyber-Physical Systems and the Internet of Things, and Ming Hsieh Institute Seminar Series

    Wed, Apr 06, 2022 @ 02:00 PM - 03:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Aaron Johnson, Mechanical Engineering at Carnegie Mellon University

    Talk Title: The Trouble with Contact: State Estimation and Control Generation for Discontinuous Systems

    Series: Center for Cyber-Physical Systems and Internet of Things

    Abstract: Contact with the outside world is challenging for robots due to its inherently discontinuous nature -- when a foot or hand is touching a surface the forces are completely different than if it is just above the surface. However, most of our computational and analytic tools for planning, learning, and control assume continuous (if not smooth or even linear) systems. Simple models of contact make assumptions (like plasticity and coulomb friction) that are known to not only be wrong physically but also inconsistent. In this talk I will present techniques for overcoming these challenges in order to adapt smooth methods to systems that have changing contact conditions. In particular I will focus on two topics: First, I will present the "Salted Kalman Filter" for state estimation over hybrid systems. Second, I will show a few techniques for generating new controllers with changing contact conditions, using both higher-order direct collocation and hybrid iLQR.

    Biography: Prof. Johnson is an Assistant Professor in Mechanical Engineering at Carnegie Mellon University, working on legged robots, adaptive controls, contact-rich manipulation, physics based planning & learning, and terrain manipulation as director of the Robomechanics Lab. Previously, his postdoc focused on convergent manipulation planning algorithms in the Personal Robotics Lab at Carnegie Mellon University. He received his PhD in 2014 on self-manipulation and dynamic behaviors on legged robots (among other things) in Kod*lab at the University of Pennsylvania. He is the recipient of the NSF Career award, the ARO Young Investigator Award, and the CMU George Tallman Ladd Research Award.

    Host: Pierluigi Nuzzo and Feifei Qian

    Webcast: https://usc.zoom.us/webinar/register/WN_zyIBh_1gQLmKpMJG0GyLxw

    Location: Online

    WebCast Link: https://usc.zoom.us/webinar/register/WN_zyIBh_1gQLmKpMJG0GyLxw

    Audiences: Everyone Is Invited

    Contact: Talyia White

    OutlookiCal
  • AME Seminar

    Wed, Apr 06, 2022 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Shreyas Mandre, University of Warwick, UK

    Talk Title: Functional interpretation for transverse arches of human foot

    Abstract: Fossil record indicates that the emergence of arches in human ancestral feet coincided with a transition from an arboreal to a terrestrial lifestyle. Propulsive forces exerted during walking and running load the foot under bending, which is distinct from those experienced during arboreal locomotion. I will present mathematical models with varying levels of detail to illustrate a simple function of the transverse arch. Just as we curve a dollar bill in the transverse direction to stiffen it while inserting it in a vending machine, the transverse arch of the human foot stiffens it for bending deformations. A fundamental interplay of geometry and mechanics underlies this stiffening -- curvature couples the soft out-of-plane bending mode to the stiff in-plane stretching deformation. In addition to presenting a functional interpretation of the transverse arch of the foot, this study also indicates a classification of flat feet based on the skeletal geometry and mechanics.

    Biography: Mandre is an applied mathematician, an engineer, and a scientist. Before moving to Warwick, he served as an Assistant Professor in the School of Engineering at Brown University from 2010 to 2019. He was also a Lecturer in Applied Mathematics at Harvard University. He received my Ph.D. in Mathematics from the University of British Columbia in 2006. His undergraduate education was in Mechanical Engineering from the Indian Institute of Technology Bombay followed by an M.S. from Northwestern University in the same subject. His research spans continuum mechanics, biomechanics, and applied mathematics, with applications to biology and engineering.



    Host: AME Department

    More Info: https://usc.zoom.us/j/93987337017?pwd=MWd2dXBSL1FaR1RPaHNscjJ1NW80UT09

    Webcast: https://usc.zoom.us/j/93987337017?pwd=MWd2dXBSL1FaR1RPaHNscjJ1NW80UT09

    Location: James H. Zumberge Hall Of Science (ZHS) - 252

    WebCast Link: https://usc.zoom.us/j/93987337017?pwd=MWd2dXBSL1FaR1RPaHNscjJ1NW80UT09

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    OutlookiCal
  • McKinsey & Company Info Session – Generalist Consultant (Virtual)

    Wed, Apr 06, 2022 @ 07:00 PM - 08:00 PM

    Viterbi School of Engineering Career Connections

    Workshops & Infosessions


    Join us for an information session to learn more about who we are, what we do, and the broad range of opportunities at McKinsey & Company! Please register for the event here:
    https://mckinsey.avature.net/events/Rsvp/?folderId=62472
    External employer-hosted events and activities are not affiliated with the USC Viterbi Career Connections Office. They are posted on Viterbi Career Connections because they may be of interest to members of the Viterbi community. Inclusion of any activity does not indicate USC sponsorship or endorsement of that activity or event. It is the participant's responsibility to apply due diligence, exercise caution when participating, and report concerns to vcareers@usc.edu

    Location: RSVP in Viterbi Career Gateway

    Audiences: Everyone Is Invited

    Contact: RTH 218 Viterbi Career Connections

    OutlookiCal