Select a calendar:
Filter October Events by Event Type:
Events for October 09, 2024
-
EiS Communications Hub - Tutoring for Engineering Ph.D. Students
Wed, Oct 09, 2024 @ 10:00 AM - 12:00 PM
Viterbi School of Engineering Student Affairs
Workshops & Infosessions
Come to the EiS Communications Hub for one-on-one tutoring from Viterbi faculty for Ph.D. writing and speaking projects!
Location: Ronald Tutor Hall of Engineering (RTH) - 222A
Audiences: Viterbi Ph.D. Students
Contact: Helen Choi
Event Link: https://sites.google.com/usc.edu/eishub/home
-
Identifying Critical Scenarios for Automated Driving Safety Validation
Wed, Oct 09, 2024 @ 10:30 AM - 11:30 AM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Adam Molin, Denso
Talk Title: Identifying Critical Scenarios for Automated Driving Safety Validation
Abstract: Verification and Validation (V&V) processes play a vital role in ensuring the safety and reliability of automated driving. Scenario-based testing in simulation has emerged as an effective approach for identifying critical scenarios that challenge the capabilities of automated driving systems. This presentation aims to explore the methodology to automatically find unknown critical test cases using specification-guided scenario-based testing. The talk will discuss the limitations of current techniques and how these can be overcome by the usage of generative AI for synthesizing critical scenarios.
This lecture satisfies the requirements for CSCI 591: Research Colloquium.
Host: Prof. Jyo Deshmukh
Location: Olin Hall of Engineering (OHE) - 136
Audiences: Everyone Is Invited
-
AAI-CCI-MHI Seminar on CPS
Wed, Oct 09, 2024 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Shai Revzen, Associate Professor Department of Electrical & Computer Science University of Michigan
Talk Title: More legs are different: the surprising simplicity of multi-legged locomotion
Series: EE598 Seminar Series
Abstract: Most of the animals that move with legs in the world do so with six or more legs, yet humans have focused primarily on bipeds and quadrupeds in designing legged robots. This talk will present some theoretical and experimental results that suggest that multi-legged robots with six or more legs exhibit some surprising properties that challenge our anthropocentric intuitions about locomotion. Modeling multi-legged motion fairly accurately, at single percentage points of relative error, turns out to be much easier than naively expected. This is both due to event-selected hybrid systems resolving multi-contact collisions in a smooth way, and due to the surprisingly high accuracy of geometric mechanics models on dry friction problems to which they shouldn't really apply. Together our results suggest that modeling and learning how to move with many legs might be much easier than has previously been thought.
Biography: Shai Revzen is an Associate Professor of Electrical Engineering and Computer Science in the University of Michigan's College of Engineering, and holds a courtesy faculty appointment in the Department of Ecology and Evolutionary Biology. He received his PhD in Integrative Biology doing research in the PolyPEDAL Lab at the University of California at Berkeley, and did his postdoctoral work in the GRASP Laboratory of the University of Pennsylvania. Prior to his academic work, Shai spent a decade in the tech industry, rising to Chief Architect R&D of the convergent systems division of Harmonic Lightwaves (HLIT). He is currently co-founder and Chief Science Officer of Acculine Medical, and General Manager of his consulting company, Izun, Inc. In his spare time he does martial arts and studies for a JD Law degree at Wayne State University.
Host: Feifei Qian
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Ariana Perez
-
AME Seminar
Wed, Oct 09, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Rahul Panat, Carnegie Mellon University
Talk Title: Printed 3D Microelectronics: Process Development, Materials Science, and Devices Applications
Abstract: In this research, we develop a printed microelectronics technique based on droplet-based nanoparticle printing using the Aerosol Jet (AJ) technology. A balance between inertia forces and surface forces for the microdroplets (each containing nanoparticles), along with rapid solvent evaporation are used to create highly complex 3D microarchitectures of metals and polymers without auxiliary support and with near-fully dense truss members. Highly intricate 3-D micro-lattices, pillars, interconnects, and spirals are demonstrated. We then use these structures to: (i) study fundamental material science, and (ii) demonstrate device applications with extraordinary performance that cannot be achieved by any other method. For (i), a temperature-gradient-driven mass transport is shown as a new mechanism of 4D printing. For (ii), novel 3D geometry of electrodes enables detection of pathogen antibodies and antigens in 10-12 seconds at femtomolar sensitivities - the fastest detection of disease biomarkers yet reported! This technology is validated through human trials. In addition, the 3D microarchitectures in our lab enable fully customizable brain-computer interfaces (BCIs) that record electrical signals between neurons at densities of thousands of electrodes/cm2, which is 5-10× the current state-of-the-art BCI technologies. The technology was validated through animal testing via recording of the action potentials from the mouse brain. We also demonstrated the printing of high-capacity Li-ion batteries and thin flexible robotic skins with embedded sensors. Lastly, our ongoing work on creating manufacturing digital twins of the AJ printing process is also discussed.
Biography: Prof. Panat is Professor. He is courtesy faculty in the Materials Science and Engineering and the Robotics Institute at CMU. He is also the Associate Director of Research at the Manufacturing Futures Institute at CMU, which is focused on bringing the latest advances in digital technologies to advanced manufacturing. Prof. Panat completed his PhD in Theoretical and Applied Mechanics from the University of Illinois at Urbana in 2004. He joined Intel Corporation’s R&D unit in Chandler, AZ, where he worked for 10 years on microprocessor materials and manufacturing R&D - specifically on 3D heterogeneous integration. At Intel, Dr. Panat led a team of engineers that developed the fabrication process for world’s first halogen-free IC chip. He was part of a team that introduced the first Si chip with a billion transistors. He returned to academia in 2014 and joined CMU in fall 2017. His research is focused on microscale 3D printing and its applications to biomedical engineering, stretchable electronics, and Li-ion batteries. He has obtained > $7.5 million in research funding from US Intelligence agencies, US Air Force, US Army, ARPA-H, National Institutes of Health (NIH), Department of Energy (DOE), National Science Foundation (NSF), and industry. Prof. Panat is recipient of several awards, including MRS gold medal, Mavis Memorial Award, an award at Intel for his work on the halogen-free chip, Struminger Teaching Fellowship, and the Russell V. Trader chair professorship at CMU.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1Location: Seaver Science Library (SSL) - 202
WebCast Link: https://usc.zoom.us/j/96060458816?pwd=8LmoG2q6vBCQubqqWpcizd2F1bxqsH.1
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/