Logo: University of Southern California

Events Calendar



Select a calendar:



Filter November Events by Event Type:



Events for November 06, 2013

  • Repeating EventMeet USC: Admission Presentation, Campus Tour, & Engineering Talk

    Wed, Nov 06, 2013

    Viterbi School of Engineering Undergraduate Admission

    Receptions & Special Events


    This half day program is designed for prospective freshmen and family members. Meet USC includes an information session on the University and the Admission process; a student led walking tour of campus and a meeting with us in the Viterbi School. Meet USC is designed to answer all of your questions about USC, the application process and financial aid. Reservations are required for Meet USC. This program occurs twice, once at 8:30 a.m. and again at 12:30 p.m. Please visit https://esdweb.esd.usc.edu/unresrsvp/MeetUSC.aspx to check availability and make an appointment. Be sure to list an Engineering major as your "intended major" on the webform!

    Location: Ronald Tutor Campus Center (TCC) - USC Admission Office

    Audiences: Everyone Is Invited

    View All Dates

    Contact: Viterbi Admission

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Six Sigma Black Belt

    Wed, Nov 06, 2013 @ 09:00 AM - 05:00 PM

    Executive Education

    Conferences, Lectures, & Seminars


    Speaker: TBA,

    Talk Title: Six Sigma Black Belt

    Abstract: Course Overview

    This course teaches you the advanced problem-solving skills you'll need in order to measure a process, analyze the results, develop process improvements and quantify the resulting savings. Project assignments between sessions require you to apply what you�ve learned. This course is presented in the classroom in three five-day sessions over a three-month period.

    Learn the advanced problem-solving skills you need to implement the principles, practices and techniques of Six Sigma to maximize performance and cost reductions in your organization. During this three-week practitioner course, you will learn how to measure a process, analyze the results, develop process improvements and quantify the resulting savings. You will be required to complete a project demonstrating mastery of appropriate analytical methods and pass an examination to earn IIE�s Six Sigma Black Belt Certificate.This practitioner course for Six Sigma implementation provides extensive coverage of the Six Sigma process as well as intensive exposure to the key analytical tools associated with Six Sigma, including project management, team skills, cost analysis, FMEA, basic statistics, inferential statistics, sampling, goodness of fit testing, regression and correlation analysis, reliability, design of experiments, statistical process control, measurement systems analysis and simulation. Computer applications are emphasized.


    NOTE: Participants must bring a laptop computer running Microsoft Office� to the seminar.

    Course Topics

    * Business process management
    * Computer applications
    * Design of experiments (DOE)
    * Design for Six Sigma (DFSS)
    * DMAIIC
    * Enterprisewide deployment
    * Lean enterprise
    * Project management
    * Regression and correlation modeling
    * Statistical methods and sampling
    * Statistical process control
    * Team processes

    Benefits

    Upon completion of this course, you will be able to:

    * Analyze process data using comprehensive statistical methods
    * Control the process to assure that improvements are used and the benefits verified
    * Define an opportunity for improving customer satisfaction
    * Implement the recommended improvements
    * Improve existing processes by reducing variation
    * Measure process characteristics that are critical to quality

    Who Should Attend

    * VPs, COOs, CEOs
    * Employees new to a managerial position
    * Employees preparing to make the transition to managerial roles
    * Current managers wanting to hone leadership skills
    * Anyone interested in implementing Lean or Six Sigma in their organization

    Program Fees

    On-Campus Participants: $7,245
    Includes continental breakfasts, lunch and all course materials. The fee does not include hotel accommodations or transportation.

    Online Participant with Live Session Interactivity: $7,245

    Includes attendee access codes for live call-in or chat capabilities during class sessions. Also includes all course and lecture materials available for live stream or download.



    Reduced Pricing:

    Institute of Industrial Engineers (IIE): Reduced pricing is available for members of IIE. Please contact professional@gapp.usc.edu for further information.

    Trojan Family: USC alumni, current students, faculty, and staff receive 10% reduced pricing on registration.

    Boeing: Boeing employees receive 20% off registration fees (please use Boeing email address when registering).

    Location
    Two course delivery options are available for participants, on-campus and online with interactivity:

    On-Campus Course is held in state-of-the-art facilities on the University of Southern California campus, located in downtown Los Angeles. Participants attending on-campus will have the option to commute to the course or stay at one of the many hotels located in the area. For travel information, please visit our Travel section.

    Overview of on-campus option:

    * The ability to interact with faculty and peers in-person.
    * Access to hard copy course materials.
    * Ability to logon and view archived course information - up to 7 days after the course has been offered. This includes course documents and streaming video of the lectures.
    * If there is a conflict during any on-campus course dates, on-campus participants can elect to be an online/interactive student.
    * Parking, refreshments and lunch are provided for on-campus participants � unless otherwise specified.

    Online (Interactivity) Course delivery is completely online and real-time, enabling interaction with the instructor and fellow participants. Participants have the flexibility of completing the course from a distance utilizing USC's Distance Education Network technology. Students are required to be online for the entirety of each day's session.

    Overview of online (interactive):

    * Virtually participate in the course live � with the ability to either ask questions or chat questions to the entire class.
    * WebEx technologies provide the option to call into the class and view the entire lecture/materials on a personal computer, or to participate on a computer without having to utilize a phone line.
    * Ability to logon and view archived course information up to 7 days after the course has been offered. This includes course documents and streaming video of the lectures.

    Continuing Education Units
    CEUs: 10.5 (CEUs provided by request only)


    USC Viterbi School of Engineering Certificate of Participation is awarded to all participants upon successful completion of course.

    Upon completion, participants will also receive their Institute of Industrial Engineers certification in SIx Sigma Black Belt.

    Host: Corporate and Professional Programs

    More Info: http://gapp.usc.edu/professional-programs/short-courses/industrial%26systems/six-sigma-black-belt

    Audiences: Registered Attendees

    Contact: Viterbi Professional Programs

    Event Link: http://gapp.usc.edu/professional-programs/short-courses/industrial%26systems/six-sigma-black-belt

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • New Neuroimaging Approaches for Understanding and Predicting Neurological Disease

    New Neuroimaging Approaches for Understanding and  Predicting Neurological Disease

    Wed, Nov 06, 2013 @ 10:30 AM - 12:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Arthur W. Toga, University of Southern California

    Talk Title: New Neuroimaging Approaches for Understanding and Predicting Neurological Disease

    Abstract: The complexity of neurodegenerative diseases often requires the collection of numerous data types from multiple modalities. These can be genetic, imaging, clinical and biosample data. In combination, they can provide biomarkers critical to chart the progression of the disease and to measure the efficacy of therapeutic intervention. The difficulties lie in how can these diverse data from different subjects, collected across multiple laboratories on a wide range of instruments using non-identical protocols be aggregated and mined to discover meaningful patterns.

    Mapping the human brain, and the brains of other species, has long been hampered by the fact that there is substantial variance in both the structure and function of this organ among individuals within a species. Previous brain atlases have relied on information from, at best, a few samples to draw conclusions. These limitations and the lack of quantification for the variance in brain structure and function have limited the pace and accuracy of research in the field of neuroscience. There are numerous probabilistic atlases that describe specific subpopulations, measure their variability and characterize the structural differences between them. Utilizing data from structural, functional, diffusion MRI, along with genome-wide association studies (GWAS) and clinical measures, we have built atlases with defined coordinate systems creating a framework for mapping and relating diverse data across studies. This talk describes the development and application of theoretical framework and computational tools for the construction of probabilistic atlases of large numbers of individuals in a population. These approaches are useful in understanding multidimensional data and their relationships over time.

    A specific and important example of mapping multimodal data is the study of Alzheimer’s. The dynamic changes that occur in brain structure and function throughout life make the study of degenerative disorders of the aged difficult. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a large national consortia established to collect, longitudinally, distributed and well described cohorts of age matched normals, mci's and Alzheimer’s patients. It results from the abnormal accumulation of misfolded amyloid and tau proteins in neurons and the extracellular space, ultimately leading to cell death and progressive cognitive decline. The consequences of this insult can be seen using a variety of imaging and other data analyzed from the ADNI database.

    Essential elements in performing this type of population based research are the informatics infrastructure to assemble, describe, disseminate and mine data collections along with computational resources necessary for large scale processing of big data such as whole genome sequence data and imaging data. This talk also describes the methods we have employed to address these challenges.


    Biography: Arthur W. Toga is a recent recruit to USC. Previously a Distinguished Professor of Neurology and University Professor at the University of California at Los Angeles (UCLA), he has been appointed as Provost Professor, Departments of Ophthalmology, Neurology, Psychiatry and the Behavioral Sciences, Radiology and Engineering. He is Director, USC Institute of Neuroimaging and Informatics and Director, Laboratory of Neuro Imaging (LONI) at USC. His research is focused on neuroimaging, informatics, mapping brain structure and function, and brain atlasing. He has developed multimodal imaging and data aggregation strategies and applied them in a variety of neurological diseases and psychiatric disorders. His work in informatics includes the development and implementation of some of the largest and most widely used databases and data mining tools linking disparate data from genetics, imaging, clinical and behavior, supporting global efforts in Alzheimer’s disease, Huntington’s and Parkinson’s disease. He was trained in neuroscience and computer science and has written more than 700 papers, chapters and abstracts, including eight books. The 100 plus members of Laboratory of Neuro Imaging include graduate students from computer science, biostatistics and neuroscience. It is funded with grants from the National Institutes of Health grants as well as industry partners. He has received numerous awards and honors in computer science, graphics and neuroscience. He is the founding Editor-in-Chief of the journal NeuroImage and holds the chairmanship of numerous committees at NIH and a variety of international task forces.

    Host: Hosted by Prof. Alexander Sawchuk

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Everyone Is Invited

    Contact: Talyia Veal

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Computer Science Faculty Meeting

    Wed, Nov 06, 2013 @ 12:00 PM - 02:00 PM

    Thomas Lord Department of Computer Science

    Workshops & Infosessions


    Computer Science Faculty Meeting.

    Details & RSVP emailed to invited faculty.

    WILL BE HELD IN ***EEB 248***

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    Audiences: Invited Faculty Only

    Contact: Assistant to CS chair

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Graduate Engineering Online Info Session

    Wed, Nov 06, 2013 @ 12:00 PM - 01:00 PM

    Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    The USC Viterbi School of Engineering is a top-10 ranked graduate engineering program by U.S News and World Report. Join us for an online information session to learn about the exciting opportunities available.

    Register Now

    Location: Online

    Audiences: Everyone Is Invited

    Contact: Ray Fujioka/GAPP

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File
  • Discover Viterbi: Green Technologies and Sustainability

    Wed, Nov 06, 2013 @ 02:00 PM - 03:00 PM

    Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    Green Technologies concern the design of products, processes, and highly complex infrastructure systems that can be applied to sustainability of the global environment. Through an understanding of product life cycles from origins to disposal, the discipline seeks opportunities for alternative sourcing, conservation , efficiency and repurposing.

    Sustainable Infrastructure is the design and construction of elements that support human society in ways that do not diminish the social and ecological processes required to maintain the diversity and functionality of natural systems.

    The USC Viterbi School of Engineering is a top 10 ranked graduate engineering program in the nation by U.S News and World Report. Join us for an online information session to learn about the exciting opportunities in Green Technologies and Sustainable Infrastructure available. Professor Edward Maby will be joining the session to highlight important information about the program.

    Register Now

    Location: Online

    Audiences: Everyone Is Invited

    Contact: Ray Fujioka/GAPP

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File