Logo: University of Southern California

Events Calendar



Select a calendar:



Filter November Events by Event Type:



Events for November 11, 2020

  • DEN@Viterbi - Online Graduate Engineering Virtual Information Session

    Wed, Nov 11, 2020 @ 09:00 AM - 10:00 AM

    Distance Education Network, Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    Join USC Viterbi School of Engineering for a virtual information session via WebEx, providing an introduction to DEN@Viterbi, our top ranked online delivery system. Discover the 40+ graduate engineering and computer science programs available entirely online.

    Attendees will have the opportunity to connect directly with USC Viterbi representatives during the session to discuss the admission process, program details and the benefits of online delivery for the working professional.

    Register Today!

    WebCast Link: https://uscviterbi.webex.com/uscviterbi/onstage/g.php?MTID=ece306f4a9390f226d006628623d51d1c

    Audiences: Everyone Is Invited

    Posted By: Corporate & Professional Programs

    OutlookiCal
  • Computer Science General Faculty Meeting

    Wed, Nov 11, 2020 @ 12:00 PM - 02:00 PM

    Computer Science

    Receptions & Special Events


    Bi-Weekly regular faculty meeting for invited full-time Computer Science faculty only. Event details emailed directly to attendees.

    Location: Zoom Meeting

    Audiences: Invited Faculty Only

    Posted By: Assistant to CS chair

    OutlookiCal
  • AME Seminar

    Wed, Nov 11, 2020 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Mark Hodes, Tufts University

    Talk Title: Asymptotic Nusselt Numbers for Internal Flow in the Cassie State and Their Application to Thermal Management of Electronics

    Abstract: We consider laminar, fully-developed, Poiseuille flows of liquid in the Cassie state through diabatic, parallel-plate microchannels symmetrically textured with isoflux ridges. Through the use of matched asymptotic expansions we analytically develop expressions for dimensionless (apparent hydrodynamic) slip lengths and variously-defined Nusselt numbers. Our small parameter (ε) is the pitch of the ridges divided by the height of the microchannel. When the ridges are oriented parallel to the (fully developed) flow, we quantify the error in the Nusselt number expressions in the literature and we provide a new closed-form result. The latter is accurate to O(ε2) and valid for any solid (ridge) fraction, whereas those in the current literature are accurate to O(ε) and break down in the important limit when solid fraction approaches zero. When the ridges are oriented transverse to the (periodically fully-developed) flow, the error associated with neglecting inertial effects to find the slip length is shown to be O(ε3Re) where Re is the channel-scale Reynolds number based on its hydraulic diameter. The corresponding Nusselt number expressions are new and their accuracy is shown to be dependent on Reynolds number, Peclet number and Prandtl number in addition to ε. They're compared to numerical results from the literature. In concluding this talk, we will show how the results can be used to design enhanced liquid-metal cooling solutions for microelectronics.

    Biography: Marc Hodes earned his BS, MS, and PhD degrees in Mechanical Engineering from the University of Pittsburgh, the University of Minnesota and the Massachusetts Institute of Technology, respectively. He spent 10 years at Bell Labs Research (Murray Hill, NJ) and has spent extended periods in residence at the National Institute of Standards and Technologies (NIST), the University of Limerick and Imperial College London. He joined the Department of Mechanical Engineering at Tufts University in 2008 where he is a Professor and the Director of Graduate Studies. His Groups research there has been funded by government agencies, e.g., NSF, DARPA and DoE, and industry, e.g., Huawei and Google. Research interests are in Transport Phenomena and, over the course of his career, four thematic areas have been addressed: 1) the thermal management of electronics, 2) mass transfer in supercritical fluids, 3) analysis of thermoelectric modules, and 4) momentum, heat, mass and charge transport in the presence of apparent slip. Professor Hodes is the sole- or co-author of 50 papers in archival journals on these subjects. He is also a co-inventor on 15 issued US patents. His current research lies in three areas. First, analytical solutions for Poiseuille and Nusselt numbers for liquid flows over diabatic structured surfaces that capture, e.g., the effects of curvature, thermocapillary stress and/or evaporation and condensation along menisci, are being developed. This thread is in the context of the Red Lotus Project, a collaboration with applied mathematicians at Imperial College London. Secondly, a series of experiments to measure densities, molecular and Soret diffusion coefficients and mass transfer rates in alcohol-carbon dioxide solutions at supercritical conditions relevant to the drying of aerogels are being conducted. Thirdly, a numerical method for the optimization of heat sinks is under development. The latter was recently spun out of Tufts University as a software product by a start-up company, Transport Phenomena Technologies, LLC, co-founded by Professor Hodes, per NSF SBIR funding.

    Host: AME Department

    More Info: https://usc.zoom.us/j/94808927541

    Webcast: https://usc.zoom.us/j/94808927541

    Location: Online event

    WebCast Link: https://usc.zoom.us/j/94808927541

    Audiences: Everyone Is Invited

    Posted By: Tessa Yao

    OutlookiCal
  • USC MEGA Student Speaker Series

    Wed, Nov 11, 2020 @ 05:00 PM - 07:00 PM

    Computer Science

    Student Activity


    What exactly are edutainment games? Most are designed to teach simple concepts like basic math and language skills to young children. But what makes some educational games better than others, and why is this interactive medium the perfect way to learn new concepts? Come join student speaker Meha Murthy this Wednesday, November 11 at 5:00 PM PST to find out the answers to these questions and more!

    Meha Murthy is currently a junior at USC majoring in Interactive Media and Game Design. An avid gamer, Meha has experience with all things games and is also the Creative Director of narrative puzzle game Larger Than Light. Have any questions for Meha? Stick around after the presentation for a quick Q&A session!

    Check out Meha's work here: 1010meha.wixsite.com/games

    Zoom link: https://usc.zoom.us/j/91823784240?pwd=d2MxcjQ4bmthQkZSTHVuSVVXKytmdz09
    Meeting ID: 918 2378 4240
    Passcode: 111120

    For any questions, please email megamesusc@gmail.com or reach out to us via our socials:
    Facebook: https://www.facebook.com/groups/USCMEGA
    Discord: https://discord.gg/4rDUD6H
    Twitter: https://twitter.com/MEGA_USC
    Website: www.uscmega.org

    Best,

    Location: Online - Zoom

    WebCast Link: https://usc.zoom.us/j/91823784240?pwd=d2MxcjQ4bmthQkZSTHVuSVVXKytmdz09

    Audiences: Everyone Is Invited

    Posted By: USC MEGA

    OutlookiCal
  • DEN@Viterbi - Online Graduate Engineering Virtual Information Session

    Wed, Nov 11, 2020 @ 06:00 PM - 07:00 PM

    Distance Education Network, Viterbi School of Engineering Graduate Admission

    Workshops & Infosessions


    Join USC Viterbi School of Engineering for a virtual information session via WebEx, providing an introduction to DEN@Viterbi, our top ranked online delivery system. Discover the 40+ graduate engineering and computer science programs available entirely online.

    Attendees will have the opportunity to connect directly with USC Viterbi representatives during the session to discuss the admission process, program details and the benefits of online delivery for the working professional.

    Register Today!

    WebCast Link: https://uscviterbi.webex.com/uscviterbi/onstage/g.php?MTID=e61ad190e07d8c4c7d219bdd5ee40867e

    Audiences: Everyone Is Invited

    Posted By: Corporate & Professional Programs

    OutlookiCal