Logo: University of Southern California

Events Calendar


  • ECE Seminar: New Generation Photoacoustic Imaging: From benchtop wholebody imagers to wearable sensors

    Fri, Mar 04, 2022 @ 10:00 AM - 11:00 AM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Dr. Lei Li, Postdoctoral Scholar, Department of Medical Engineering, California Institute of Technology

    Talk Title: New Generation Photoacoustic Imaging: From benchtop wholebody imagers to wearable sensors

    Abstract: Whole-body imaging has played an indispensable role in preclinical research by providing high-dimensional physiological, pathological, and phenotypic insights with clinical relevance. Yet, pure optical imaging suffers from either shallow penetration or a poor depth-to-resolution ratio, and non-optical techniques for whole-body imaging of small animals lack either spatiotemporal resolution or functional contrast. We have developed a dream machine, demonstrating that a stand-alone single-impulse panoramic photoacoustic computed tomography (SIP-PACT) mitigates these limitations by combining high spatiotemporal resolution, deep penetration, anatomical, dynamical and functional contrasts, and full-view fidelity. SIP-PACT has imaged in vivo whole-body dynamics of small animals in real time, mapped whole-brain functional connectivity, and tracked circulation tumor cells without labeling. It also has been scaled up for human breast cancer diagnosis. SIP-PACT opens a new window for medical researchers to test drugs and monitor longitudinal therapy without the harm from ionizing radiation associated with X-ray CT, PET, or SPECT. Genetically encoded photochromic proteins benefit photoacoustic computed tomography (PACT) in detection sensitivity and specificity, allowing monitoring of tumor growth and metastasis, multiplexed imaging of multiple tumor types at depths, and real-time visualization of protein-protein interactions in deep-seated tumors. Integrating the newly developed microrobotic system with PACT permits deep imaging and precise control of the micromotors in vivo and promises practical biomedical applications, such as drug delivery. In addition, to shape the benchtop PACT systems toward portable and wearable devices with low cost without compromising the imaging performance, we recently have developed photoacoustic topography through an ergodic relay, a high-throughput imaging system with significantly reduced system size, complexity, and cost, enabling wearable applications. As a rapidly evolving imaging technique, photoacoustic imaging promises preclinical applications and clinical translation.

    Biography: Lei Li obtained his Ph.D. degree from the Department of Electrical Engineering at California Institute of Technology (Caltech) in 2019. He received his MS degrees at Washington University in St. Louis in 2016. He is currently a postdoctoral scholar in the Department of Medical Engineering at Caltech. His research focuses on developing next-generation medical imaging technology for understanding the brain better, diagnosing early-stage cancer, and wearable monitoring of human vital signs. He was selected as a TED fellow in 2021 and a rising star in Engineering in Health by Columbia University and Johns Hopkins University (2021). He received the Charles and Ellen Wilts Prize from Caltech in 2020 and was selected as one of the Innovators Under 35 by MIT Technology Review in 2019. He is also a two-time winner of the Seno Medical Best Paper Award granted by SPIE (2017 and 2020, San Francisco).

    Host: Dr. Justin Haldar, jhaldar@usc.edu

    Webcast: https://usc.zoom.us/j/97334155702?pwd=SFlvZ2Y0b3pHMEFxalhNdmxvdU5odz09

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    WebCast Link: https://usc.zoom.us/j/97334155702?pwd=SFlvZ2Y0b3pHMEFxalhNdmxvdU5odz09

    Audiences: Everyone Is Invited

    Contact: Mayumi Thrasher

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File

Return to Calendar