-
CS Colloquium: Geoff Pleiss (Columbia University) - Bridging the Gap Between Deep Learning and Probabilistic Modeling
Thu, Apr 07, 2022 @ 11:00 AM - 12:00 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Geoff Pleiss , Columbia University
Talk Title: Bridging the Gap Between Deep Learning and Probabilistic Modeling
Series: CS Colloquium
Abstract: Deep learning excels with large-scale unstructured data - common across many modern application domains - while probabilistic modeling offers the ability to encode prior knowledge and quantify uncertainty - necessary for safety-critical applications and downstream decision-making tasks. I will discuss examples from my research that bridge the gap between these two learning paradigms. The first half will show that insights from deep learning can improve the practicality of probabilistic models. I will discuss work that scales Gaussian process regression, a common probabilistic model, to datasets two orders of magnitude larger than previously reported. The second half will show that probabilistic methods can improve our understanding of deep learning. I will demonstrate that Gaussian process theory uncovers new insights about the effects of width and depth in neural networks. I will conclude with ongoing efforts to quantify neural network uncertainty, develop new inductive biases, and other work at the intersection of deep learning and probabilistic modeling.
This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Geoff Pleiss is a postdoctoral researcher at Columbia University, hosted by John Cunningham, with affiliations in the Department of Statistics and the Zuckerman Institute. He obtained his Ph.D. in Computer Science from Cornell University, advised by Kilian Weinberger, and his B.Sc. from Olin College of Engineering. His research interests are broadly situated in machine learning, including neural networks, Gaussian processes, uncertainty quantification, and scalability. Geoff is also the co-founder and maintainer of the GPyTorch software framework.
Host: Robin Jia
Location: Olin Hall of Engineering (OHE) - 132
Audiences: By invitation only.
Contact: Assistant to CS chair