Logo: University of Southern California

Events Calendar

  • ECE Seminar: High-Assurance Design Methods for Trustworthy Autonomous Cyber-Physical Systems

    Tue, Oct 18, 2022 @ 11:00 AM - 12:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars

    Speaker: Professor Pierluigi Nuzzo, Ming Hsieh Dept of ECE, USC Viterbi School of Engineering

    Talk Title: High-Assurance Design Methods for Trustworthy Autonomous Cyber-Physical Systems

    Abstract: Correctness and safety assurance is of utmost importance in mission-critical systems for various applications, for example, in avionics, automobiles, robotics, and manufacturing. In these systems, increasingly more sophisticated tasks that were previously allocated to humans are expected to be performed by software, including modern artificial intelligence (AI) methods. One of the biggest challenges to full autonomy is arguably in showing that these AI and autonomous software functions will still satisfy the stringent safety and correctness requirements of mission-critical systems in uncertain or unpredictable environments. In this talk, I will introduce our approach toward enhancing design-time assurance for trustworthy autonomous cyber-physical systems. I will present synthesis methods for correct-by-construction design of optimal control and reinforcement learning policies in uncertain and unknown environments with provable guarantees on the satisfaction of complex missions, expressed by temporal logic specifications. I will then introduce the rich specification formalism of stochastic assume-guarantee contracts for compositional, quantitative requirement analysis and system verification under uncertainty. Finally, I will discuss how stochastic contracts can provide the semantic foundation for the automated construction of assurance cases, structured arguments about system dependability, which can accelerate system certification and help transition from a process-driven to a property-driven certification approach.

    Biography: Pierluigi Nuzzo is an Assistant Professor and the Kenneth C. Dahlberg Early Career Chair in the Department of Electrical and Computer Engineering at USC, where he is also the Associate Director of the Center for Autonomy and Artificial Intelligence. He received the PhD in Electrical Engineering and Computer Sciences from UC Berkeley, and BS and MS degrees in Electrical and Computer Engineering from the University of Pisa and the Sant'Anna School of Advanced Studies in Pisa, Italy. Before joining UC Berkeley, he held research positions at the University of Pisa and IMEC, Leuven, Belgium, working on analog and mixed-signal circuit design. His interests focus on methodologies and tools for high-assurance design of cyber-physical systems and systems-on-chip, including the application of formal methods and optimization theory to problems in embedded and cyber-physical systems, electronic design automation, requirement engineering, security, and artificial intelligence. He received the 2022 Early-Career Award from the IEEE Technical Committee on Cyber-Physical Systems, the DARPA Young Faculty Award in 2020, the NSF CAREER Award in 2019, and best paper and design competition awards from the International Conference on Formal Methods and Models for System Design (MEMOCODE), the International Conference on Cyber-Physical Systems (ICCPS), the Design Automation Conference (DAC) and the International Solid-State Circuit Conference (ISSCC). His awards also include the IBM PhD Fellowship, the UC Berkeley Outstanding Instructor Award, and the UC Berkeley EECS David J. Sakrison Memorial Prize for his doctoral research.

    Host: Professor Richard M. Leahy (leahy@sipi.usc.edu)

    Webcast: https://usc.zoom.us/j/91207739138?pwd=aDVQOXRwNUZyMm5DYXhvTTM5K0Z1dz09

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248

    WebCast Link: https://usc.zoom.us/j/91207739138?pwd=aDVQOXRwNUZyMm5DYXhvTTM5K0Z1dz09

    Audiences: Everyone Is Invited

    Contact: Mayumi Thrasher


Return to Calendar