-
Center of Autonomy and AI, Center for Cyber-Physical Systems and the Internet of Things, and Ming Hsieh Institute Seminar Series
Wed, Oct 19, 2022 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Abhishek Cauligi, Jet Propulsion Laboratory
Talk Title: Enabling Long Range Autonomy for the Next Generation of Spacecraft Robotic Missions
Series: Center for Cyber-Physical Systems and Internet of Things
Abstract: Surface rovers have a rich history of use for planetary body exploration, but current rover missions are limited to low operational speeds and require significant ground-in-the-loop management and teleoperation to compute safe paths for the rovers to follow. However, the next generation of proposed planetary surface rover missions require significantly faster operating speeds in order to accomplish the mission tasks and objectives, thereby making autonomy a key enabling technology for such missions. This talk will discuss the challenges ahead in developing, validating, and safely deploying autonomy algorithms for the next generation of spacecraft robotic missions. The first half of this talk will focus on the autonomy architecture for NASA's Cooperative Autonomous Distributed Robotic Explorers (CADRE) mission, a technology demonstration mission that will deliver a team of autonomous rovers to the Moon's Reiner Gamma region in 2024. The latter half of the talk will focus on how recent advances in bridging data-driven approaches with nonlinear optimization can allow for embedding sophisticated planning and decision making capabilities on resource-constrained autonomous systems.
Biography: Abhishek Cauligi is a Robotics Technologist with the Surface Mobility Group within the Robotics section of NASA's Jet Propulsion Laboratory. He received his B.S. in Aerospace Engineering from the University of Michigan - Ann Arbor in 2016 and his PhD. in Aeronautics and Astronautics from Stanford University under the supervision of Prof. Marco Pavone in 2021, where he was a recipient of the NASA Space Technology Research Fellowship (NSTRF/NSTRGO). His research interests lie in leveraging recent advances in nonlinear optimization, machine learning, and control theory towards planning and control for complex spacecraft robotic systems.
Host: Somil Bansal, somilban@usc.edu
Webcast: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3QLocation: Hughes Aircraft Electrical Engineering Center (EEB) - 132
WebCast Link: https://usc.zoom.us/webinar/register/WN_ySGInGwKRKKHX7NHJwTk3Q
Audiences: Everyone Is Invited
Contact: Talyia White