Logo: University of Southern California

Events Calendar


  • AME Seminar

    Wed, Feb 22, 2023 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: David Doan, Stanford University

    Talk Title: Strategies to Achieve Order: Colloidal Self-Assembly and Nano-Enhanced Additive Manufacturing

    Abstract: Achieving order is key to the improvement of materials properties in applications such as mechanics, catalysis, and photonics. Colloidal self-assembly has been a field of interest due to its ability to manipulate nanoscale/microscale particles to create periodic structures. However, a challenge in this field is the ability to expand the possible phase space of crystal structures that can be formed. Here, we explore the fundamentals of shape- or entropy-driven self-assembly to achieve different types of order. I will discuss an experimental framework that allows us to fabricate particles of complex shapes using two-photon lithography and assemble them under a gravitational field. I will present experimental, analytical, and computational results for the self-assembly of truncated tetrahedrons on a 2D interface.

    I will also present on enhancing mechanical properties through the addition of atomically precise nanoclusters in polymeric structures to create nanocomposites. This, in conjunction with two-photon lithography, allows us to fabricate strong but lightweight structures of arbitrary shapes. We show that these nanoclusters enhance the overall mechanical properties of the structure, above what is expected from simple composite theory.



    Biography: David Doan is currently a PhD candidate in Mechanical Engineering at Stanford University under the supervision of Professor Wendy Gu, with a planned graduation in mid-2023. He received his Masters degree in Mechanical Engineering at Stanford and Bachelors degree in Mechanical Engineering at MIT. He is an NSF Graduate Fellow and Questbridge Scholar. His current research focuses on the fundamentals of self-assembly and mechanics but eventually wants to develop more scalable fabrication techniques that connect the nanoscale to the macroscale.

    Host: AME Department

    More Info: https://ame.usc.edu/seminars/

    Webcast: https://usc.zoom.us/j/98775609685?pwd=a2lSd01oY0o2KzA4VWphbGxjWk5Qdz09

    Location: John Stauffer Science Lecture Hall (SLH) - 102

    WebCast Link: https://usc.zoom.us/j/98775609685?pwd=a2lSd01oY0o2KzA4VWphbGxjWk5Qdz09

    Audiences: Everyone Is Invited

    Contact: Tessa Yao

    Event Link: https://ame.usc.edu/seminars/

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File

Return to Calendar