Logo: University of Southern California

Events Calendar


  • Aerospace and Mechanical Engineering Seminar Series

    Wed, Oct 22, 2014 @ 03:30 PM - 04:30 PM

    Aerospace and Mechanical Engineering

    Conferences, Lectures, & Seminars


    Speaker: Kevin Chen, Viterbi Fellow in Department of Aerospace & Mechanical Engineering at the University of Southern California, Los Angeles, CA

    Talk Title: Vortex Breakdown, Instability, and Sensitivity of a T-Junction Flow

    Series: Aerospace and Mechanical Engineering Seminar Series

    Abstract: The fluid flow through a T-shaped pipe bifurcation (with the inlet at the bottom of the "T") is a very familiar occurrence in both natural and man-made systems. Everyday examples include industrial pipe networks, microfluidic channels, and blood flows near the heart and brain. Yet, many questions about the flow physics remain, and prior analyses have been rudimentary. This seminar addresses three important questions: 1) How does the flow evolve with Reynolds number? 2) What are the important flow structures? 3) Lastly, where in the flow do the stability eigenvalues exhibit high sensitivity to dynamical perturbations? Much of this research focuses on the relation between vortex breakdown in the outlet pipes and the regions of stability, receptivity, and sensitivity as defined by linear global stability theory. The vortex breakdown, which occurs above a Reynolds number of 320, gives rise to recirculation regions near the junction; a supercritical Hopf bifurcation first occurs at a Reynolds number of 556. Regions of growth are concentrated in the outlet pipes, but regions of receptivity to initial conditions and external disturbances are confined to small regions near the walls of the inlet and junction. Finally, the flow is most sensitive to localized feedback and to base flow modifications in the recirculation regions, which we explain using an inviscid Lagrangian short-wavelength theory. To the best of our knowledge, this is the most complicated flow for which anyone has observed the relation between sensitivity and recirculation.

    Biography: Kevin Chen is presently a Viterbi Postdoctoral Fellow at the University of Southern California, in the Aerospace and Mechanical Engineering department. He attended Caltech as an Axline Scholar, where he received a B.S. with Honor in Engineering and Applied Science, with a focus in Aeronautics, in 2009. At Caltech, he conducted research in experimental and computational fluid dynamics with Mory Gharib, Beverley McKeon, and Tim Colonius. He attended Princeton University as a Gordon Y. S. Wu fellow, where he received an M.A. and a Ph.D. in Mechanical and Aerospace Engineering in 2011 and 2014, respectively, under the advising of Clancy Rowley and Howard Stone. He has received support from the Barry M. Goldwater Scholarship, the DOD NDSEG and NSF GRFP fellowships, and awards from Caltech and Princeton University. Kevin's primary research interest is the development of feedback flow control, where fluid mechanics intersect with modern control theory, stability theory, dynamical systems, and computational methods.

    Host: Professor Paul Ronney

    Location: Seaver Science Library (SSL) - 150

    Audiences: Everyone Is Invited

    Contact: Valerie Childress

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File

Return to Calendar