Logo: University of Southern California

Events Calendar


  • Viterbi/Ming Hsieh Institute Seminar

    Mon, Feb 23, 2015 @ 11:00 AM - 01:00 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Speaker: Dr. Andrei Faraon, Applied Physics, Materials Science and Medical Engineering at California Institute of Technology

    Talk Title: Quantum light-matter interfaces based on rare-earthdoped crystals and nano-photonics

    Abstract: Quantum light-matter interfaces that reversibly map the quantum state of photons onto the quantum states of atoms, are essential components in the quantum engineering toolbox with applications in quantum communication, computing, and quantum-enabled sensing. In this talk I present our progress towards developing on-chip quantum light-matter interfaces based on nanophotonic resonators fabricated in rare-earthdoped crystals known to exhibit the longest optical and spin coherence times in the solid state. We recently demonstrated coherent control of neodymium (Nd3+) ions coupled to yttrium orthosilicate Y2SiO5 (YSO) photonic crystal nano-beam resonator. The coupling of the Nd3+ 883 nm 4I9/2-4F3/2 transition to the nanoresonator
    results in a 40 fold enhancement of the transition rate (Purcell effect), and increased optical absorption (~80%) - adequate for realizing efficient optical quantum memories via cavity impedance matching. Optical coherence times T2 up to 100 μs with low spectral diffusion were measured for ions embedded in
    photonic crystals, which are comparable to those observed in unprocessed bulk samples. This indicates that the remarkable coherence properties of REIs are preserved during nanofabrication process. Multi-temporal mode photon storage using stimulated photon echo and atomic frequency comb (AFC) protocols were implemented in these nano-resonators. Our current technology can be readily transferred to Erbium (Er) doped YSO devices, therefore opening the possibility of efficient on-chip optical quantum memory at 1.5 μm telecom wavelength. Integration with superconducting qubits can lead to devices for reversible quantum conversion of optical photons to microwave photons.

    Biography: Dr. Andrei Faraon is an Assistant Professor of Applied Physics, Materials Science and Medical Engineering at California Institute of Technology. After earning a B.S. degree in physics with honors in 2004 at California Institute of Technology, he received his M.S. in Electrical Engineering and PhD in Applied Physics both from Stanford University in 2009. At Stanford, Dr. Faraon was involved with seminal experiments on quantum optics
    using single indium arsenide quantum dots strongly coupled to photonic crystal cavities in gallium arsenide. After earning his PhD, Dr. Faraon spent three years as a postdoctoral fellow at Hewlett Packard Laboratories. At HP he was involved with pioneering experiments on diamond quantum photonic devices coupled to solid-state spins. He demonstrated the first nano-resonators coupled to single nitrogen vacancy centers in mono-crystalline diamond. Faraon left HP in 2012 to become an Assistant Professor at Caltech. At Caltech, he set up a laboratory specialized in developing nano-photonic technologies for devices that operate close to the fundamental limit of
    light-matter interaction. He is focused both on fundamental challenges on how to control the interaction between single atoms and single photons using nano-technologies, and on using nano-photonics to build cutting edge devices for bio-imaging, bio-sensing and photo-voltaic energy harvesting. He is the recipient of the NSF CAREER award and the AFOSR young investigator award.

    Host: Viterbi/MHI

    Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132

    Audiences: Everyone Is Invited

    Contact: Marilyn Poplawski

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File

Return to Calendar