Logo: University of Southern California

Events Calendar

  • NL Seminar- Finding memory in time

    Fri, Apr 13, 2018 @ 03:00 PM - 04:00 PM

    Information Sciences Institute

    Conferences, Lectures, & Seminars

    Speaker: Yuanhang Su , USC

    Talk Title: Finding memory in time

    Series: Natural Language Seminar

    Abstract: For a large number of natural language processing NLP problems, we are concerned with finding semantic patterns from input sequences. In recurrent neural network RNN based approach, such pattern is encoded in a vector called hidden state. Since Elmans Finding structure in time published in 1990, it has long been believed that the magic power of RNNs memory, which is enclosed inside the hidden state, can handle very long sequences. Yet besides some experimental observations, there is no formal definition of RNNs memory, let alone a rigid mathematical analysis of how RNNs memory forms.

    This talk will focus on understanding memory from two viewpoints. The first viewpoint is that memory is a function that maps certain elements in the input sequences to the current output. Such definition, for the first time in literature, allows us to do detailed analysis of the memory of simple RNN SRN, long short term memory ELSTM, and gated recurrent unit GRU. It also opens the door for further improving the existing RNN basic models. The end results are the proposal of a new basic RNN model called extended LSTM ELSTM with outstanding performance for complex language tasks, and a new macro RNN model called dependent bidirectional RNN DBRNN with smaller cross entropy than bidirectional RNN BRNN and encoderdecoder enc dec models. The second viewpoint is that memory is a compact representation of sparse sequential data. From this perspective, the process of generating hidden state of RNN is simply dimension reduction. Thus, method like principal component analysis PCA which does not require labels for training becomes attractive. However, there are two known problems in implementing PCA for NLP problems: the first is computational complexity; the second is vectorization of sentence data for PCA. To deal with this problem, an efficient dimension reduction algorithm called tree structured multi linear PCA is proposed.

    Biography: Yuanhang Su received the dual B.S. degree in Electrical Engineering and Automation and Electronic and Electrical Engineering from University of Strathclyde, Glasgow, U.K. and Shanghai University of Electric Power, Shanghai, China, respectively in 2009, and the M.S. degree in Electrical Engineering from the University of Southern California, Los Angeles, CA, in 2010. From 2011 to 2015, he worked as image video camera software and algorithm engineer for a Los Angeles startup named Exaimage, Shanghai Aerospace Electronics Technology Institute in China and Huawei Technology in China consecutively. He joined MCL lab in 2016 spring, and is currently pursing his Ph.D. in computer vision, natural language processing and machine learning.

    Host: Nanyun Peng

    More Info: http://nlg.isi.edu/nl-seminar/

    Location: 11th Flr Conf Rm # 1135, Marina Del Rey

    Audiences: Everyone Is Invited

    Contact: Peter Zamar


Return to Calendar