-
CS Colloquium: Bryan Perozzi (Google AI) - Machine Learning on Graphs
Thu, Nov 14, 2019 @ 03:30 PM - 04:50 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Bryan Perozzi, Google AI
Talk Title: Machine Learning on Graphs
Series: Computer Science Colloquium
Abstract: Machine Learning on Graphs (also known as Relational Learning, or Graph-Based Machine Learning) is a branch of ML which focuses on problems where the data items (nodes) contain discrete relationships (edges) between themselves (usually in addition to traditional real-valued feature vectors). The structure of these links between unlabelled data items can be leveraged for both semi-supervised learning and unsupervised learning algorithms.
In this talk, I will provide an overview of the area, and some recent results from our team in clustering and representation learning. When appropriate, I will try to motivate our research with examples of real world problems.
This lecture satisfies requirements for CSCI 591: Research Colloquium.
Biography: Bryan Perozzi is a Senior Research Scientist in Google AI's Algorithms and Optimization group, where he routinely analyzes some of the world's largest (and perhaps most interesting) graphs. Bryan's research focuses on developing techniques for learning expressive representations of relational data with neural networks. These scalable algorithms are useful for prediction tasks (classification/regression), pattern discovery, and anomaly detection in large networked data sets.
Bryan is an author of 20+ peer-reviewed papers at leading conferences in machine learning and data mining (such as ICML, NeurIPS, KDD, and WWW). His doctoral work on learning network representations was awarded the 2017 KDD Dissertation Award. Bryan received his Ph.D. in Computer Science from Stony Brook University in 2016, and his M.S. from the Johns Hopkins University in 2011.
Host: Sami Abu-El-Haija
Location: Henry Salvatori Computer Science Center (SAL) - 101
Audiences: Everyone Is Invited
Contact: Computer Science Department