Logo: University of Southern California

Events Calendar


  • Harnessing optical forces on a silicon chip nanomechanics meets nanophotonics

    Fri, Feb 05, 2010 @ 02:00 PM - 03:30 PM

    Ming Hsieh Department of Electrical and Computer Engineering

    Conferences, Lectures, & Seminars


    Presented by Dr.Mo Li
    Department of Electrical Engineering, Yale UniversityAbstract:
    The force exerted by photons is of fundamental importance in light-matter interactions. For example, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force was theoretically expected to be greatly enhanced in nanophotonic devices in which light intensity is highly concentrated. Recently, we reported the direct detection and exploitation of transverse gradient optical force in an integrated silicon photonic circuit. We showed that an NEMS resonator embedded in a silicon waveguide can be actuated efficiently by the optical force. We further experimentally proved theoretical predictions that this optical force is bipolar – its direction can be tuned to attractive or repulsive by changing the relative optical phase of coupled lightwaves. Subsequently, we have exploited optical forces in a variety of optomechanical structures, including photonic crystal and micro-disk optical resonators. Harnessing the optical force on a silicon chip will enable new nanophotonic and nanomechanical device functions, such as all-optical switching, tunable nanophotonic, radio-frequency photonics and large-scale integration of NEMS.Biography:
    Mo Li currently is a postdoctoral associate in Department of Electrical Engineering at Yale University. He received Ph.D. (2007) in Applied Physics from Caltech, M.S. (2003) in Physics from UC San Diego, and B.S. (2001) in Physics from Univ. of Science and Technology of China (USTC). His primary research interests are nano-electromechanical systems (NEMS), nanophotonics, nano-optomechanical systems (NOMS) and integrated quantum photonics.

    Location: Seaver Science Library (SSL) - 150

    Audiences: Everyone Is Invited

    Contact: Hazel Xavier

    Add to Google CalendarDownload ICS File for OutlookDownload iCal File

Return to Calendar