Logo: University of Southern California

Events Calendar


  • CS Colloquium: Sanjiban Choudhury (Cornell University) - Interactive Imitation Learning: Planning Alongside Humans

    Tue, Feb 08, 2022 @ 04:00 PM - 05:20 PM

    Computer Science

    Conferences, Lectures, & Seminars


    Speaker: Sanjiban Choudhury, Cornell University

    Talk Title: Interactive Imitation Learning: Planning Alongside Humans

    Series: Computer Science Colloquium

    Abstract: Advances in machine learning have fueled progress towards deploying real-world robots from assembly lines to self-driving. However, if robots are to truly work alongside humans in the wild, they need to solve fundamental challenges that go beyond collecting large-scale datasets. Robots must continually improve and learn online to adapt to individual human preferences. How do we design robots that both understand and learn from natural human interactions?

    In this talk, I will dive into two core challenges. First, I will discuss learning from natural human interactions where we look at the recurring problem of feedback-driven covariate shift. We will tackle this problem from a unified framework of distribution matching. Second, I will discuss learning to predict human intent where we look at the chicken-or-egg problem of planning with learned forecasts. I will present a graph neural network approach that tractably reasons over latent intents of multiple actors in the scene. Finally, we will demonstrate how these methods come together to result in a self-driving product deployed at scale.

    Register in advance for this webinar at:

    https://usc.zoom.us/webinar/register/WN_R-AyYtIjSlG4acgjxUOK9w

    After registering, attendees will receive a confirmation email containing information about joining the webinar.

    This lecture satisfies requirements for CSCI 591: Research Colloquium.


    Biography: Sanjiban Choudhury is a Research Scientist at Aurora Innovation and soon-to-be Assistant Professor at Cornell University. His research goal is to enable robots to work seamlessly alongside human partners in the wild. To this end, his work focuses on imitation learning, decision making and human-robot interaction. He obtained his Ph.D. in Robotics from Carnegie Mellon University and was a Postdoctoral fellow at the University of Washington. His research has received best paper awards at ICAPS 2019, finalist for IJRR 2018, and AHS 2014, and winner of the 2018 Howard Hughes award. He is a Siebel Scholar, class of 2013.


    Host: Stefanos Nikolaidis

    Webcast: https://usc.zoom.us/webinar/register/WN_R-AyYtIjSlG4acgjxUOK9w

    Location: Online - Zoom Webinar

    WebCast Link: https://usc.zoom.us/webinar/register/WN_R-AyYtIjSlG4acgjxUOK9w

    Audiences: Everyone Is Invited

    Contact: Computer Science Department

    OutlookiCal

Return to Calendar