-
Bio-Inspired Cognition, Adaptation, and Learning over Networks
Thu, Feb 02, 2012 @ 02:00 PM - 03:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Ali H. Sayed, UCLA Electrical Engineering
Talk Title: Bio-Inspired Cognition, Adaptation, and Learning Over Networks
Abstract: Complex patterns of behavior are common in many biological networks, where no single agent is in command and yet forms of decentralized intelligence are evident. Examples include fish joining together in schools, birds flying in formation, bees swarming towards a new hive, and bacteria diffusing towards a nutrient source. While each individual agent in these biological networks is not capable of complex behavior, it is the combined coordination among multiple agents that leads to the manifestation of sophisticated order at the network level. The study of these phenomena opens up opportunities for collaborative research across several domains including economics, life sciences, biology, and information processing, in order to address and clarify several relevant questions such as: (a) how and why organized and complex behavior arises at the group level from interactions among agents without central control? (b) What communication topologies enable the emergence of order at the higher level from interactions at the lower level? (c) How is information quantized during the diffusion of knowledge through the network? And (d) how does mobility influence the learning abilities of the agents and the network. Several disciplines are concerned in elucidating different aspects of these questions including evolutionary biology, animal behavior studies, physical biology, and even computer graphics. In the realm of signal processing, these questions motivate the need to study and develop decentralized strategies for information processing that are able to endow networks with real-time adaptation and learning abilities. This presentation examines several patterns of decentralized intelligence in biological networks, and describes powerful diffusion adaptation and online learning strategies that our research group has been developing in recent years to model and reproduce these kinds of behavior.
Biography: A. H. Sayed is Professor and former Chairman of Electrical Engineering at the University of California, Los Angeles. He is also the Principal Investigator of the UCLA Adaptive Systems Laboratory (www.ee.ucla.edu/asl). He has published widely in the areas of adaptation and learning with over 350 articles and 5 books. His research interests span several fields including adaptation and learning, adaptive and cognitive networks, biological networks, cooperative behavior, distributed processing, and statistical signal processing. His research contributions have been recognized with several awards and prizes.
Host: Prof. C.-C. Jay Kuo
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Talyia Veal