Select a calendar:
Filter November Events by Event Type:
Events for November 15, 2024
-
EiS Communications Hub - Tutoring for Engineering Ph.D. Students
Fri, Nov 15, 2024 @ 10:00 AM - 02:00 PM
Viterbi School of Engineering Student Affairs
Workshops & Infosessions
Come to the EiS Communications Hub for one-on-one tutoring from Viterbi faculty for Ph.D. writing and speaking projects!
Location: Ronald Tutor Hall of Engineering (RTH) - 222A
Audiences: Viterbi Ph.D. Students
Contact: Helen Choi
Event Link: https://sites.google.com/usc.edu/eishub/home
-
Alfred E.Mann Department of Biomedical Engineering - Seminar series
Fri, Nov 15, 2024 @ 11:00 AM - 12:00 PM
Alfred E. Mann Department of Biomedical Engineering
Conferences, Lectures, & Seminars
Speaker: Dr. Lidan You, Ph.D., Professor of Mechanical and Materials Engineering/Queen's University
Talk Title: Bone Mechanobiology On-a-Chip
Abstract: Bone has the remarkable ability to adapt its composition and structure to suit its mechanical environment. Osteocytes, bone cells embedded in the calcified matrix, are believed to be the mechanosensors and are responsible for orchestrating the bone remodeling process. However, the detailed cellular and molecular mechanisms underlying osteocyte mechanobiology are not well understood. Furthermore, how osteocytes communicate with other cell populations under mechanical loading remains unclear. Recently, several microfluidic platforms were developed to address these questions. In this talk, we will discuss intercellular communication between cell populations under mechanical loading and its implications in managing bone disorders such as bone metastasis prevention. Specifically, we studied the effects of vibration on breast cancer extravasation using our novel microfluidic co-culture platform. Our findings showed that vibration could reduce breast cancer migration by directly co-culturing osteocytes with cancer cells. Vibration also reduced trans-endothelial breast cancer migration (extravasation), suggesting that it may inhibit the early stages of bone metastasis. Additionally, we demonstrated that ZA, the standard treatment for osteolytic bone metastasis, could decrease breast cancer extravasation, and the effect was further enhanced under vibration. This is the first research that targets osteocyte-cancer interactions under vibration using an organ-on-chip system, which is an essential step toward developing a safe treatment for the high-risk population
Biography: Dr. You is a Tier 1 Canadian Research Chair in Cell Mechanics and Mechanobiology, and a Professor of Mechanical and Materials Engineering (MME) at Queen’s University. She earned her Ph.D. from the City University of New York and completed her postdoctoral training at Stanford University. Dr. You joined the MME at Queen’s University in 2024. Prior to joining MME, she held cross-appointed positions at the University of Toronto as the Erwin Edward Hart Professor in Mechanical and Industrial Engineering and as a Professor in the Institute of Biomedical Engineering. Dr. You has received numerous awards and recognitions, including the Early Researcher Award from the Ontario Ministry of Research and Innovation, the Duggan Medal from the Canadian Society of Mechanical Engineering, and has been elected a Fellow of both the Canadian Society of Mechanical Engineering (CSME) and the American Society of Bone and Mineral Research (ASBMR). She has been serving on grant review panels, including those for the National Institutes of Health (NIH) (SBSR), the Canadian Institutes of Health Research (CIHR) (BME, CIB), and Arthritis Society Canada (Innovation, Strategic Operating). Additionally, Dr. You have been a faculty mentor for the Young Investigator Initiative (YII) Workshop, organized by the United States Bone and Joint Initiative (USBJI), since 2017, where she supports and guides early-career investigators in musculoskeletal research.Her research focuses on solving biomechanical questions in the musculoskeletal system at the cellular level. Specifically, her team is working on understanding the anti-resorptive effect of mechanical loading on bone tissue, investigating breast cancer bone metastasis and prostate cancer bone metastasis, studying osteocyte mechanosensitivity in diabetic conditions, and developing advanced microfluidic systems for bone cell mechanotransduction studies.
Host: Peter Wang
Location: Ronald Tutor Hall of Engineering (RTH) - 109
Audiences: Everyone Is Invited
Contact: Carla Stanard
-
ISSS - Dr. Matthew Johnston, Friday, Nov. 15th at 2pm in EEB 132
Fri, Nov 15, 2024 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Matthew Johnston, Accociate Professor, Oregon State University
Talk Title: Worth the Squeeze: Power and Packaging Approaches for Biosensors and Bioelectronics
Series: ISSS
Abstract: The integration of new materials, sensing modalities, and intelligence in CMOS-based sensor platforms will enable a broad range of miniaturized diagnostic, therapeutic, and monitoring systems. In addition, such devices will require new approaches for long-term powering and operation that avoid battery replacement/recharging. Achieving these goals will require continued chip-level and system-level advancements, as well as new integration and packaging approaches. In this talk, I will focus on two challenges: 1) Thermoelectric energy harvesting applied to wearable devices, including true battery-less, bioelectronic sensors powered by body heat, as well as other ultra-low-power sensors for chemistry and biology; and, 2) emerging Lab-on-CMOS platforms enabled by IC-based sensors and advanced packaging techniques that combine electronics and microfluidics in a single substrate for biosensing applications.
Biography: Dr. Matthew Johnston received the B.S. degree in electrical engineering from the California Institute of Technology, and the M.S. and Ph.D. degrees in electrical engineering from Columbia University. He was a Co-Founder and Manager of Research with Helixis, a Caltech-based spinout developing instrumentation for real-time PCR, from 2007 to its acquisition by Illumina in 2010. Dr. Johnston joined Oregon State University in 2014, where he is currently an Associate Professor with the School of Electrical Engineering and Computer Science. His research interests include the integration of sensors and transducers with silicon CMOS integrated circuits, lab-on-CMOS platforms, ultra-low-power sensors, stretchable circuits, and bio-energy harvesting. Dr. Johnston was the recipient of the 2020 Semiconductor Research Corporation (SRC) Young Faculty Award. He is currently an Associate Editor of the IEEE Transactions on Circuits and Systems II, and he has also served as an Associate Editor for the IEEE Open Journal of Circuits and Systems and the IEEE Transactions on Biomedical Circuits and Systems.
Host: Hossein Hashemi, Mike Chen and Constantine Sideris
More Info: https://usc.zoom.us/j/96947583326
More Information: MHI_Seminar_Flyer_Johnston_Nov15_2024.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 132
Audiences: Everyone Is Invited
Contact: Marilyn Poplawski
Event Link: https://usc.zoom.us/j/96947583326