-
Seminar will be exclusively online (no in-room presentation) - CS Colloquium: Alan Liu (Carnegie Mellon University) - Enabling Future-Proof Telemetry for Networked Systems
Tue, Mar 31, 2020 @ 11:00 AM - 12:00 PM
Thomas Lord Department of Computer Science
Conferences, Lectures, & Seminars
Speaker: Alan Liu, Carnegie Mellon University
Talk Title: Enabling Future-Proof Telemetry for Networked Systems
Series: CS Colloquium
Abstract: Today's networked systems, such as data center, cellular, and sensor networks, face increasing demands on security, performance, and reliability. To fulfill these demands, we first need to obtain timely and accurate telemetry information about what is happening in the system. For instance, understanding the volume and the number of distinct network connections can help detect and mitigate network attacks. In storage systems, identifying hot items can help balance the server load. Unfortunately, existing telemetry tools cannot robustly handle multiple telemetry tasks with diverse workloads and resource constraints.
In this talk, I will present my research that focuses on building telemetry systems that are future-proof for current and unforeseen telemetry tasks, diverse workloads, and heterogeneous platforms. I will discuss the efficient algorithms and implementations that realize this future-proof vision in network monitoring for hardware and software platforms. I will describe how bridging theory and practice with sketching and sampling algorithms can significantly reduce memory footprints and speedup computations while providing robust results. Finally, I will end the talk with new directions in obtaining future-proof analytics for other types of networked systems, such as low-power sensors and mobile devices, while enhancing energy efficiency and data privacy.
This lecture satisfies requirements for CSCI 591: Research Colloquium
Biography: Alan (Zaoxing) Liu is a postdoctoral researcher at Carnegie Mellon University. His research interests are in networked and distributed systems with a recent focus on efficient system and algorithmic design for telemetry, big-data analytics, and privacy. His research papers have been published in venues such as ACM SIGCOMM, USENIX FAST, and OSDI. He is a recipient of the best paper award at USENIX FAST'19 for his work on large-scale distributed load balancing. His work received multiples recognitions, including ACM STOC "Best-of-Theory" plenary talk and USENIX ATC "Best-of-Rest". Prior to CMU, he obtained his Ph.D. in Computer Science from Johns Hopkins University.
Host: Ramesh Govindan
Location: Seminar will be exclusively online (no in-room presentation)
Audiences: Everyone Is Invited
Contact: Assistant to CS chair