SUNMONTUEWEDTHUFRISAT
Events for March 26, 2015
-
Ming Hsieh Institute Distinguished Visitor Seminar
Thu, Mar 26, 2015 @ 11:00 AM - 12:00 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Prof. Georgios B. Giannakis , University of Minnesota
Talk Title: Seminar II: Comprehensive State Inference for Cognitive Radio Networks
Series: MHI Distinguished Visitor Seminar Series
Abstract: Spectrum sensing is a critical prerequisite in envisioned applications of wireless cognitive radio (CR) networks, which promise to resolve the perceived bandwidth scarcity versus under-utilization dilemma. This talk presents recent advances for comprehensive situation awareness at the PHY of CR networks by capitalizing on the novel notion of spatio-temporal RF cartography, which amounts to constructing two families of maps: (m1) global power spectral density maps capturing the distribution of power across space, time, and frequency; and (m2) local channel gain maps providing the propagation medium per frequency from each node to any point in space and time. Paralleling the success of routing tables, the vision is to have CR nodes jointly utilize these maps so as to enable: (v1) identification of opportunistically available spectrum bands for re-use, and handoff operation; (v2) localization, transmit-power estimation, and tracking of primary user activities; and (v3) interference control, resource allocation, and routing. If time allows, CR sensing beyond the PHY will be presented too for flagging network anomalies.
Biography: (Fellowâ97) received his Diploma in Electrical Engr. from the Ntl. Tech. Univ. of Athens, Greece, 1981. From 1982 to 1986 he was with the Univ. of Southern California (USC), where he received his MSc. in Electrical Engineering, 1983, MSc. in Mathematics, 1986, and Ph.D. in Electrical Engr., 1986. Since 1999 he has been a professor with the Univ. of Minnesota, where he now holds an ADC Chair in Wireless Telecommunications in the ECE Department, and serves as director of the Digital Technology Center. His general interests span the areas of communications, networking and statistical signal processing subjects on which he has published more than 375 journal papers, 625 conference papers, 20 book chapters, two edited books and two research monographs (h-index 112). Current research focuses on big data analytics, wireless cognitive radios, network science with applications to social, brain, and power networks with renewables. He is the (co-) inventor of 22 patents issued, and the (co-) recipient of 8 best paper awards from the IEEE Signal Processing (SP) and Communications Societies, including the G. Marconi Prize Paper Award in Wireless Communications. He also received Technical Achievement Awards from the SP Society (2000), from EURASIP (2005), a Young Faculty Teaching Award, the G. W. Taylor Award for Distinguished Research from the University of Minnesota, and the IEEE Fourier Technical Field Award (2015). He is a Fellow of EURASIP, and has served the IEEE in a number of posts including that of a Distinguished Lecturer for the IEEE-SP Society.
Host: Professor Richard Leahy
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Talyia Veal
-
Electrical Engineering Systems Seminar - Xuehai Qian
Thu, Mar 26, 2015 @ 02:00 PM - 03:30 PM
Ming Hsieh Department of Electrical and Computer Engineering
Conferences, Lectures, & Seminars
Speaker: Xuehai Qian, Postdoctoral Researcher, University of California Berkeley
Talk Title: Taming Relaxed Memory Consistency and Non-determinism in Parallel Systems
Abstract: With computer architectures moving towards an era dominated by many-core machines and the ever-increasing demands of big data processing, parallel programming has become the norm. Unfortunately, most current programmers find parallelism challenging. It is urgent to provide architectural and software supports to make parallel applications easy to build, reason and debug. Among others, relaxed memory consistency and non-determinism in particular make shared-memory based parallel programming difficult.
In this talk, I will give an overview of our strategy to tame the two factors. Specifically, I will present OmniOrder, a cache coherence protocol for atomic blocks (transactions). It eliminates the effects of relaxed consistency by supporting strict sequential consistency with high performance. OmniOrder supports conflict serialization based on the conventional directory-based protocol. I will also present Pacifier, a deterministic record and replay scheme for relaxed consistency models beyond Total-Store-Order (TSO). It helps to track and understand the behaviors of relaxed consistency.
Biography: Xuehai Qian is a postdoctoral researcher at University of California Berkeley. He got the Ph.D. from the Department of Computer Science at the University of Illinois, Urbana-Champaign in 2013. His research interests include parallel computer architecture, architectural support for programming productivity and debugging support for large-scale HPC applications. He received an MS in Computer Science from the Institute of Computing Technology (ICT), Chinese Academy of Sciences (CAS), and a BS in Computer Engineering from Beihang University, Beijing.
Host: Prof. Michel Dubois
More Information: print_Qian.pdf
Location: Hughes Aircraft Electrical Engineering Center (EEB) - 248
Audiences: Everyone Is Invited
Contact: Estela Lopez