-
AME Seminar
Wed, Feb 07, 2024 @ 03:30 PM - 04:30 PM
Aerospace and Mechanical Engineering
Conferences, Lectures, & Seminars
Speaker: Negar Nazari, Harvard
Talk Title: Microfluidics with Macro-Impact: Advancing Sustainability through Nanoparticle - Enhanced Foams for Optimized CO2 Sequestration
Abstract: The contemporary global challenge centers on ensuring water and energy access for a growing population while minimizing environmental impacts and promoting sustainability. Porous media play a crucial role in this, facilitating processes like carbon sequestration, hydrogen storage, and geothermal energy extraction within geological formations. The Paris Climate Accord emphasizes reducing greenhouse gas emissions, with carbon sequestration in geological formations being a potential solution. However, challenges like ensuring safe storage and preventing leaks remain. Utilizing a foaming solution alongside CO2 injection emerges as a promising method to reduce the mobility of CO2, enhancing the blockage of CO2 in more permeable areas and thus bolstering storage safety. A significant hurdle in this technique is the thermodynamic instability of the bubble interface in the high salinity brines found in host formations. The introduction of nanoparticles enhances the interface's stability, counteracting the capillary forces that destabilize the foam's lamellae. The dynamics of gas-liquid interfaces differ between aqueous surfactants and nanoparticles. Nanoparticles impact the drag on elongated bubbles at low capillary numbers by establishing monolayer formations at the fluid interface, which in turn increases the interfacial dilatational viscoelasticity. This enhancement in viscoelasticity strengthens the interface's dynamic resistance to changes in surface area, whether through stretching or compressing, thereby improving the stability of the interface.
Biography: Negar Nazari is a Postdoctoral fellow at the school of engineering and applied sciences at Harvard University. Her research focuses on understanding complex fluid flow and transport in porous media with particular emphasis on topics relevant to energy and sustainability including but not limited to carbon and hydrogen storage. Prior to her postdoc, she completed her PhD at the energy science and engineering department at Stanford University. Her PhD research focused on microscale analysis of fluid-fluid interactions and complex multiphase flow in fractured systems and channels. Her research interests lie in energy and sustainability, microfluidics, and data-driven and programming techniques to upscale flow studies. Negar received the Trailblazing Researcher Award from the California Institute of Technology for exceptional contributions and frontier research in Energy and Sustainability.
Host: AME Department
More Info: https://ame.usc.edu/seminars/
Webcast: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09Location: James H. Zumberge Hall Of Science (ZHS) - 252
WebCast Link: https://usc.zoom.us/j/95892885119?pwd=QXZOZUhrcTJRYk5qZzZwVThrTytVZz09
Audiences: Everyone Is Invited
Contact: Tessa Yao
Event Link: https://ame.usc.edu/seminars/